Advertisement

Complexity of Consistent Query Answering in Databases Under Cardinality-Based and Incremental Repair Semantics

  • Andrei Lopatenko
  • Leopoldo Bertossi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4353)

Abstract

A database D may be inconsistent wrt a given set IC of integrity constraints. Consistent Query Answering (CQA) is the problem of computing from D the answers to a query that are consistent wrt IC. Consistent answers are invariant under all the repairs of D, i.e. the consistent instances that minimally depart from D. Three classes of repair have been considered in the literature: those that minimize set-theoretically the set of tuples in the symmetric difference; those that minimize the changes of attribute values, and those that minimize the cardinality of the set of tuples in the symmetric difference. The latter class has not been systematically investigated. In this paper we obtain algorithmic and complexity theoretic results for CQA under this cardinality-based repair semantics. We do this in the usual, static setting, but also in a dynamic framework where a consistent database is affected by a sequence of updates, which may make it inconsistent. We also establish comparative results with the other two kinds of repairs in the dynamic case.

Keywords

Vertex Cover Integrity Constraint Original Database Conjunctive Query Minimum Vertex Cover 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arenas, M., Bertossi, L., Chomicki, J.: Consistent Query Answers in Inconsistent Databases. In: Proc. ACM Symposium on Principles of Database Systems (PODS 1999), pp. 68–79. ACM Press, New York (1999)CrossRefGoogle Scholar
  2. 2.
    Arenas, M., Bertossi, L., Chomicki, J.: Answer Sets for Consistent Query Answering in Inconsistent Databases. Theory and Practice of Logic Programming 3(4-5), 393–424 (2003)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Arenas, M., Bertossi, L., Chomicki, J., He, X., Raghavan, V., Spinrad, J.: Scalar Aggregation in Inconsistent Databases. Theoretical Computer Science 296, 405–434 (2003)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Bertossi, L., Bravo, L., Franconi, E., Lopatenko, A.: Fixing Numerical Attributes under Integrity Constraints. In: Bierman, G., Koch, C. (eds.) DBPL 2005. LNCS, vol. 3774, pp. 262–278. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Bertossi, L., Chomicki, J.: Query Answering in Inconsistent Databases. In: Logics for Emerging Applications of Databases, pp. 43–83. Springer, Heidelberg (2003)Google Scholar
  6. 6.
    Buccafurri, F., Leone, N., Rullo, P.: Enhancing Disjunctive Datalog by Constraints. IEEE Transactions on Knowledge and Data Engineering 12(5), 845–860 (2000)CrossRefGoogle Scholar
  7. 7.
    Calì, A., Lembo, D., Rosati, R.: Complexity of Query Answering over Inconsistent and Incomplete Databases. In: Proc. ACM Symposium on Principles of Database Systems (PODS 2003), pp. 260–271. ACM Press, New York (2003)Google Scholar
  8. 8.
    Chen, J., Kanj, I., Jia, W.: Vertex Cover: Further Observations and Further Improvements. In: Widmayer, P., Neyer, G., Eidenbenz, S. (eds.) WG 1999. LNCS, vol. 1665, pp. 313–324. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  9. 9.
    Chomicki, J., Marcinkowski, J.: Minimal-Change Integrity Maintenance using Tuple Deletions. Information and Computation 197(1-2), 90–121 (2005)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Monographs in Computer Science. Springer, Heidelberg (1999)Google Scholar
  11. 11.
    Eiter, T., Gottlob, G.: On the Complexity of Propositional Knowledge Base Revision, Updates, and Counterfactuals. Artificial Intelligence 57(2-3), 227–270 (1992)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Flesca, S., Furfaro, F., Parisi, F.: Consistent Query Answers on Numerical Databases under Aggregate Constraints. In: Bierman, G., Koch, C. (eds.) DBPL 2005. LNCS, vol. 3774, pp. 279–294. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    Flum, J., Grohe, M.: Parameterized Complexity Theory. Texts in Theoretical Computer Science. Springer, Heidelberg (2006)Google Scholar
  14. 14.
    Franconi, E., Laureti Palma, A., Leone, N., Perri, S., Scarcello, F.: Census Data Repair: a Challenging Application of Disjunctive Logic Programming. In: Nieuwenhuis, R., Voronkov, A. (eds.) LPAR 2001. LNCS (LNAI), vol. 2250, pp. 561–578. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  15. 15.
    Fuxman, A., Miller, R.: First-Order Query Rewriting for Inconsistent Databases. In: Eiter, T., Libkin, L. (eds.) ICDT 2005. LNCS, vol. 3363, pp. 337–351. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  16. 16.
    Garey, M., Johnson, D., Stockmeyer, L.: Some Simplified NP-Complete Graph Problems. Theoretical Computer Science 1(3), 237–267 (1976)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Gelfond, M., Lifschitz, V.: Classical Negation in Logic Programs and Disjunctive Databases. New Generation Computing 9, 365–385 (1991)CrossRefGoogle Scholar
  18. 18.
    Greco, G., Scarcello, F.: On the Complexity of Computing Peer Agreements for Consistent Query Answering in Peer-to-Peer Data Integration Systems. In: Proc. International Conference on Information and Knowledge Management (CIKM 2005), pp. 36–43. ACM Press, New York (2005)CrossRefGoogle Scholar
  19. 19.
    Grohe, M.: Parameterized Complexity for the Data-base Theorist. SIGMOD Record 31(4), 86–96 (2002)CrossRefGoogle Scholar
  20. 20.
    Immerman, N.: Descriptive Complexity. Graduate Texts in Computer Science. Springer, Heidelberg (1999)MATHGoogle Scholar
  21. 21.
    Krentel, M.: The Complexity of Optimization Problems. J. Computer and Systems Sciences 36, 490–509 (1988)MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Lopatenko, A., Bertossi, L.: Complexity of Consistent Query Answering in Databases under Cardinality-Based and Incremental Repair Semantics. Corr Archiv paper cs.DB/0604002Google Scholar
  23. 23.
    Miltersen, P.B., Subramanian, S., Vitter, J.S., Tamassia, R.: Complexity Models for Incremental Computation. Theoretical Computer Science 130(1), 203–236 (1994)MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Niedermeier, R., Rossmanith, P.: An Efficient Fixed-Parameter Algorithm for 3-Hitting Set. Journal of Discrete Algorithms 1(1), 89–102 (2003)MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Papadimitriou, C.H., Yannakakis, M.: On the Complexity of Database Queries. J. Comput. Syst. Sci. 58(3), 407–427 (1999)MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Papadimitriou, C.: Computational Complexity. Addison-Wesley, Reading (1994)MATHGoogle Scholar
  27. 27.
    Robertson, N., Sanders, D.P., Seymour, P., Thomas, R.: Eficiently Four-Coloring Planar Graphs. In: Proc. 28th ACM Symposium on the Theory of Computing (STOC 1996), pp. 571–575. ACM Press, New York (1996)CrossRefGoogle Scholar
  28. 28.
    Weber, V., Schwentick, T.: Dynamic Complexity Theory Revisited. In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404, pp. 256–268. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  29. 29.
    Wijsen, J.: Condensed Representation of Database Repairs for Consistent Query Answering. In: Calvanese, D., Lenzerini, M., Motwani, R. (eds.) ICDT 2003. LNCS, vol. 2572, pp. 378–393. Springer, Heidelberg (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Andrei Lopatenko
    • 1
  • Leopoldo Bertossi
    • 2
  1. 1.Faculty of Computer ScienceFree University of Bozen-BolzanoBozen-BolzanoItaly
  2. 2.School of Computer ScienceCarleton UniversityOttawaCanada

Personalised recommendations