Query Evaluation on a Database Given by a Random Graph

  • Nilesh Dalvi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4353)


We consider random graphs, and their extensions to random structures, with edge probabilities of the form βn  − − α, where n is the number of vertices, α, β are fixed and α> 1 (α> arity – 1 for structures of higher arity). We consider conjunctive properties over these random graphs, and investigate the problem of computing their asymptotic conditional probabilities. This provides us a novel approach to dealing with uncertainty in databases, with applications to data privacy and other database problems.


Random Graph Information Disclosure Data Privacy Truth Assignment Query Evaluation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abiteboul, S., Duschka, O.M.: Complexity of answering queries using materialized views. In: PODS, pp. 254–263 (1998)Google Scholar
  2. 2.
    Babcock, B., Chaudhuri, S.: Towards a robust query optimizer: a principled and practical approach. In: SIGMOD, pp. 119–130 (2005)Google Scholar
  3. 3.
    Bacchus, F., Grove, A.J., Halpern, J.Y., Koller, D.: From statistical knowledge bases to degrees of belief. Artificial Intelligence 87(1-2), 75–143 (1996)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Chandra, A.K., Merlin, P.M.: Optimal implementation of conjunctive queries in relational data bases. In: STOC, pp. 77–90 (1977)Google Scholar
  5. 5.
    Dalvi, N., Milkau, G., Suciu, D.: Asymptotic conditional probabilities for conjunctive queries. In: Eiter, T., Libkin, L. (eds.) ICDT 2005. LNCS, vol. 3363, Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Dalvi, N., Suciu, D.: Query answering using probabilistic views. In: VLDB, pp. 805–816 (2005)Google Scholar
  7. 7.
    Dalvi, N., Suciu, D.: Query evaluation on a database given by a random graph (April 2006)Google Scholar
  8. 8.
    Evfimievski, A., Gehrke, J., Srikant, R.: Limiting privacy breaches in privacy preserving data mining. In: PODS, pp. 211–222 (2003)Google Scholar
  9. 9.
    Fagin, R.: Probabilities on finite models. Journal of Symbolic Logic 41(1), 50–58 (1976)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Getoor, L., Taskar, B., Koller, D.: Selectivity estimation using probabilistic models. In: SIGMOD, pp. 461–472 (2001)Google Scholar
  11. 11.
    Glebskiĭ, Y.V., Kogan, D.I., Liogon’kiĭ, M.I., Talanov, V.A.: Range and degree of realizability of formulas in the restricted predicate calculus. Kibernetika, 2, 17–28, (1969); [Engl. Transl. Cybernetics, vol. 5, 142–154 (1972)]Google Scholar
  12. 12.
    Halevy, A.Y.: Answering queries using views: A survey. The VLDB Journal 10(4), 270–294 (2001)zbMATHCrossRefGoogle Scholar
  13. 13.
    Hemaspaandra, L.A., Vollmer, H.: The satanic notations: Counting classes beyond #p and other definitional adventures. Technical report, Rochester, NY, USA (1994)Google Scholar
  14. 14.
    Kifer, D., Gehrke, J.E.: Injecting utility into anonymized datasets. In: SIGMOD (2006)Google Scholar
  15. 15.
    Lenzerini, M.: Data integration: a theoretical perspective. In: PODS, pp. 233–246 (2002)Google Scholar
  16. 16.
    Liogon’kiĭ, M.I.: On the conditional satisfyability ratio of logical formulas. Mathematical Notes of the Academy of the USSR 6, 856–861 (1969)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Lynch, J.F.: Probabilities of sentences about very sparse random graphs. Random struct. algorithms 3(1), 33–54 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Lynch, J.F.: Infinitary logics and very sparse random graphs. In: Logic in Computer Science, pp. 191–198 (1993)Google Scholar
  19. 19.
    Machanavajjhala, A., Gehrke, J., Kifer, D., Venkitasubramaniam, M.: l-diversity: Privacy beyond k-anonymity. In: ICDE, p. 24 (2006)Google Scholar
  20. 20.
    Miklau, G., Suciu, D.: A formal analysis of information disclosure in data exchange. In: SIGMOD (2004)Google Scholar
  21. 21.
    Spencer, J., Shelah, S.: Zero-one laws for sparse random graphs. J. Amer. Math. Soc, 97–115 (1988)Google Scholar
  22. 22.
    Valiant, L.: The complexity of computing the permanent. Theoretical Computer Science 8, 189–201 (1979)zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Vardi, M.Y.: The complexity of relational query languages. In: STOC, pp. 137–146 (1982)Google Scholar
  24. 24.
    Wagner, K.W.: More complicated questions about maxima and minima, and some closures of NP. Theor. Comput. Sci. 51(1-2), 53–80 (1987)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Nilesh Dalvi
    • 1
  1. 1.University of WashingtonSeattle

Personalised recommendations