The ISL RT-06S Speech-to-Text System

  • Christian Fügen
  • Shajith Ikbal
  • Florian Kraft
  • Kenichi Kumatani
  • Kornel Laskowski
  • John W. McDonough
  • Mari Ostendorf
  • Sebastian Stüker
  • Matthias Wölfel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4299)


This paper describes the 2006 lecture and conference meeting speech-to-text system developed at the Interactive Systems Laboratories (ISL), for the individual head-mounted microphone (IHM), single distant microphone (SDM), and multiple distant microphone (MDM) conditions, which was evaluated in the RT-06S Rich Transcription Meeting Evaluation sponsored by the US National Institute of Standards and Technologies (NIST). We describe the principal differences between our current system and those submitted in previous years, namely improved acoustic and language models, cross adaptation between systems with different front-ends and phoneme sets, and the use of various automatic speech segmentation algorithms.


Acoustic Model Word Error Rate Maximum Likelihood Linear Regression Conference Meeting Viterbi Training 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fügen, C., Kolss, M., Bernreuther, D., Paulik, M., Stüker, S., Vogel, S., Waibel, A.: Open Domain Speech Recognition & Translation: Lectures and Speeches. In: ICASSP (2006)Google Scholar
  2. 2.
    Wölfel, M., McDonough, J.: Combining Multi-Source Far Distance Speech Recognition Strategies: Beamforming, Blind Channel and Confusion Network Combination. In: INTERSPEECH (2005)Google Scholar
  3. 3.
    Metze, F., Jin, Q., Fügen, C., Laskowski, K., Pan, Y., Schultz, T.: Issues in Meeting Transcription – The ISL Meeting Transcription System. In: ICSLP (2004)Google Scholar
  4. 4.
    Wölfel, M., McDonough, J.: Minimum Variance Distortionless Response Spectral Estimation Review and Refinements. IEEE Signal Processing Magazine (September 2005)Google Scholar
  5. 5.
    Stüker, S., Fügen, C., Burger, S., Wölfel, M.: Cross-System Adaptation and Combination for Continuous Speech Recognition: The Influence of Phoneme Set and Acoustic Front-End. In: INTERSPEECH (2006)Google Scholar
  6. 6.
    Jin, Q., Schultz, T.: Speaker Segmentation and Clustering in Meetings. In: ICSLP (2004)Google Scholar
  7. 7.
    Stüker, S., Fügen, C., Hsiao, R., Ikbal, S., Jin, Q., Kraft, F., Paulik, M., Raab, M.W.M., Tam, Y.-C.: The ISL TC-STAR Spring 2006 ASR Evaluation Systems. In: TC-Star Workshop on Speech-to-Speech Translation (2006)Google Scholar
  8. 8.
    Makhoul, J.: Linear Prediction: A Tutorial Review. Proc. of the IEEE 63(4), 561–580 (1975)CrossRefGoogle Scholar
  9. 9.
    Fügen, C., Wölfel, M., McDonough, J.W., Ikbal, S., Kraft, F., Laskowski, K., Ostendorf, M., Stüker, S., Kumatani, K.: Advances in Lecture Recognition: The ISL RT-06S Evaluation System. In: INTERSPEECH (2006)Google Scholar
  10. 10.
    Pfau, T., Ellis, D.P.W., Stolcke, A.: Multispeaker Speech Activity Detection for the ICSI Meeting Recorder. In: Proc. ASRU (2001)Google Scholar
  11. 11.
    Wrigley, S.N., Brown, G.J., Wan, V., Renals, S.: Speech and Crosstalk Detection in Multichannel Audio. IEEE Trans. on Speech and Audio Processing 13, 84–91 (2005)CrossRefGoogle Scholar
  12. 12.
    Laskowski, K., Schultz, T.: Unsupervised Learning of Overlapped Speech Model Parameters for Multichannel Speech Activity Detection in Meetings. In: Proc. ICASSP (2006)Google Scholar
  13. 13.
    Çetin, Ö., Shriberg, E.: Speaker Overlaps and ASR Errors in Meetings: Effects Before, During, and After the Overlap. In: Proc. ICASSP (2006)Google Scholar
  14. 14.
    Soltau, H., Metze, F., Fügen, C., Waibel, A.: A One Pass-Decoder Based on Polymorphic Linguistic Context Assignment. In: ASRU (2001)Google Scholar
  15. 15.
    Gales, M.J.F.: Semi-tied covariance matrices. In: ICASSP (1998)Google Scholar
  16. 16.
    McDonough, J., Schaaf, T., Waibel, A.: On Maximum Mutual Information Speaker-Adapted Training. In: ICASSP (2002)Google Scholar
  17. 17.
    Fisher, W.M.: A Statistical Text-to-Phone Function Using Ngrams and Rules. In: ICASSP (1999)Google Scholar
  18. 18.
    Stolcke, A.: SRILM – An Extensible Language Modeling Toolkit. In: ICSLP (2002)Google Scholar
  19. 19.
    Chen, S.F., Goodman, J.: An Empirical Study of Smoothing Techniques for Language Modeling. Computer Science Group, Harvard University, Tech. Rep. TR-10-98 (1998)Google Scholar
  20. 20.
    Bulyko, I., Ostendorf, M., Stolcke, A.: Getting more Mileage from Web Text Sources for Conversational Speech Language Modeling using Class-Dependent Mixtures. In: Proc. HLT-NAACL (2003)Google Scholar
  21. 21.
    Çetin, Ö., Stolcke, A.: Language Modeling in the ICSI-SRI Spring 2005 Meeting Speech Recognition Evaluation System. International Computer Science Institute, Berkeley, CA, USA, Tech. Rep. TR-05-006 (2005)Google Scholar
  22. 22.
    Venkataraman, A., Wang, W.: Techniques for Effective Vocabulary Selection. In: Proc. Eurospeech (2003)Google Scholar
  23. 23.
    Black, A.W., Taylor, P.A.: The Festival Speech Synthesis System: System documentation. Human Communciation Research Centre, University of Edinburgh, Edinburgh, Scotland, United Kongdom, Tech. Rep. HCRC/TR-83 (1997)Google Scholar
  24. 24.
    Zhan, P., Westphal, M.: Speaker Normalization Based on Frequency Warping. In: ICASSP (1997)Google Scholar
  25. 25.
    Gales, M.J.F.: Maximum Likelihood Linear Transformations for HMM-based Speech Recognition. Cambridge University, Cambridge, United Kingdom, Tech. Rep. (1997)Google Scholar
  26. 26.
    Leggetter, C.J., Woodland, P.C.: Maximum Likelihood Linear Regression for Speaker Adaptation of Continuous Density Hidden Markov Models. Computer Speech and Language 9, 171–185 (1995)CrossRefGoogle Scholar
  27. 27.
    Yu, H., Tam, Y.-C., Schaaf, T., Stüker, S., Jin, Q., Noamany, M., Schultz, T.: The ISL RT04 Mandarin Broadcast News Evaluation System. In: EARS Rich Transcription Workshop (2004)Google Scholar
  28. 28.
    Lamel, L., Gauvain, J.-L.: Alternate Phone Models for Conversational Speech. In: ICASSP (2005)Google Scholar
  29. 29.
    Mangu, L., Brill, E., Stolcke, A.: Finding Consensus among Words: Lattice-based Word Error Minimization. In: EUROSPEECH (1999)Google Scholar
  30. 30.
    Wölfel, M., Fügen, C., Ikbal, S., McDonough, J.W.: Multi-Source Far-Distance Microphone Selection and Combination for Automatic Transcription of Lectures. In: INTERSPEECH (2006)Google Scholar
  31. 31.
    CHIL – Computers in the Human Interaction Loop,

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Christian Fügen
    • 1
  • Shajith Ikbal
    • 1
  • Florian Kraft
    • 1
  • Kenichi Kumatani
    • 1
  • Kornel Laskowski
    • 1
  • John W. McDonough
    • 1
  • Mari Ostendorf
    • 1
    • 2
  • Sebastian Stüker
    • 1
  • Matthias Wölfel
    • 1
  1. 1.Interactive Systems LaboratoriesUniversität Karlsruhe (TH)KarlsruheGermany
  2. 2.Dept. of Electrical EngineeringUniversity of WashingtonSeattleUSA

Personalised recommendations