Detecting Action Items in Multi-party Meetings: Annotation and Initial Experiments

  • Matthew Purver
  • Patrick Ehlen
  • John Niekrasz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4299)


This paper presents the results of initial investigation and experiments into automatic action item detection from transcripts of multi-party human-human meetings. We start from the flat action item annotations of [1], and show that automatic classification performance is limited. We then describe a new hierarchical annotation schema based on the roles utterances play in the action item assignment process, and propose a corresponding approach to automatic detection that promises improved classification accuracy while also enabling the extraction of useful information for summarization and reporting.


Action Item Task Description AAAI Spring Symposium Speak Language Understanding Speaker Utterance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gruenstein, A., Niekrasz, J., Purver, M.: Meeting structure annotation: Data and tools. In: Proceedings of the 6th SIGdial Workshop on Discourse and Dialogue, pp. 117–127 (2005)Google Scholar
  2. 2.
    Lisowska, A., Popescu-Belis, A., Armstrong, S.: User query analysis for the specification and evaluation of a dialogue processing and retrieval system. In: Proceedings of the 4th International Conference on Language Resources and Evaluation (2004)Google Scholar
  3. 3.
    Banerjee, S., Rosé, C., Rudnicky, A.: The necessity of a meeting recording and playback system, and the benefit of topic-level annotations to meeting browsing. In: Proceedings of the 10th International Conference on Human-Computer Interaction, pp. 643–656 (2005)Google Scholar
  4. 4.
    Nicholas C. Romano, J., Jay F. Nunamaker, J.: Meeting analysis: Findings from research and practice. In: Proceedings of the 34th Hawaii International Conference on System Sciences (2001)Google Scholar
  5. 5.
    Corston-Oliver, S., Ringger, E., Gamon, M., Campbell, R.: Task-focused summarization of email. In: Proceedings of the Text Summarization Branches Out ACL Workshop (2004)Google Scholar
  6. 6.
    Allen, J., Core, M.: Draft of DAMSL: Dialog act markup in several layers (1997),
  7. 7.
    Core, M., Allen, J.: Coding dialogues with the DAMSL annotation scheme. In: Traum, D. (ed.) AAAI Fall Symposium on Communicative Action in Humans and Machines, pp. 28–35 (1997)Google Scholar
  8. 8.
    Shriberg, E., Dhillon, R., Bhagat, S., Ang, J., Carvey, H.: The ICSI Meeting Recorder Dialog Act Corpus. In: Proceedings of the 5th SIGdial Workshop on Discourse and Dialogue, pp. 97–100 (2004)Google Scholar
  9. 9.
    Stolcke, A., Ries, K., Coccaro, N., Shriberg, E., Bates, R., Jurafsky, D., Taylor, P., Ess-Dykema, C.V., Martin, R., Meteer, M.: Dialogue act modeling for automatic tagging and recognition of conversational speech. Computational Linguistics 26(3), 339–373 (2000)CrossRefGoogle Scholar
  10. 10.
    Webb, N., Hepple, M., Wilks, Y.: Dialogue act classification using intra-utterance features. In: Proceedings of the AAAI Workshop on Spoken Language Understanding (2005)Google Scholar
  11. 11.
    Goodwin, C.: Action and embodiment within situated human interaction. Journal of Pragmatics 32, 1489–1522 (2000)CrossRefGoogle Scholar
  12. 12.
    Janin, A., Baron, D., Edwards, J., Ellis, D., Gelbart, D., Morgan, N., Peskin, B., Pfau, T., Shriberg, E., Stolcke, A., Wooters, C.: The ICSI Meeting Corpus. In: Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pp. 364–367 (2003)Google Scholar
  13. 13.
    Burger, S., MacLaren, V., Yu, H.: The ISL Meeting Corpus: The impact of meeting type on speech style. In: Proceedings of the 6th International Conference on Spoken Language Processing (ICSLP 2002) (2002)Google Scholar
  14. 14.
    Siegel, S.N.J., Castellan, J.: Nonparametric Statistics for the Behavioral Sciences, 2nd edn. McGraw-Hill, New York (1988)Google Scholar
  15. 15.
    Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer, Heidelberg (1995)MATHGoogle Scholar
  16. 16.
    Joachims, T.: Making large-scale SVM learning practical. In: Schölkopf, B., Burges, C., Smola, A. (eds.) Advances in Kernel Methods – Support Vector Learning. MIT Press, Cambridge (1999)Google Scholar
  17. 17.
    Klein, D., Toutanova, K., Ilhan, H.T., Kamvar, S.D., Manning, C.D.: Combining heterogeneous classifiers for word-sense disambiguation. In: Proceedings of the ACL Workshop on Word Sense Disambiguation: Recent Successes and Future Directions, pp. 74–80 (2002)Google Scholar
  18. 18.
    Niekrasz, J., Gruenstein, A.: A software framework for semantic annotation of multimodal discourse. In: The 5th Conference on Language Resources and Evaluation (LREC 2006) (2006)Google Scholar
  19. 19.
    Bates, R., Menning, P., Willingham, E., Kuyper, C.: Meeting acts: A labeling system for group interaction in meetings. In: The 9th European Conference on Speech Communication and Technology (Interspeech 2005), pp. 1589–1592 (2005)Google Scholar
  20. 20.
    Dowding, J., Gawron, J.M., Appelt, D., Bear, J., Cherny, L., Moore, R., Moran, D.: Gemini: A natural language system for spoken language understanding. In: Proc. 31st Annual Meeting of the Association for Computational Linguistics (1993)Google Scholar
  21. 21.
    Niekrasz, J., Purver, M., Dowding, J., Peters, S.: Ontology-based discourse understanding for a persistent meeting assistant. In: Persistent Assistants: Living and Working with AI: Papers from the 2005 AAAI Spring Symposium (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Matthew Purver
    • 1
  • Patrick Ehlen
    • 1
  • John Niekrasz
    • 1
  1. 1.Center for the Study of Language and InformationStanford UniversityStanfordUSA

Personalised recommendations