Kalman Tracking with Target Feedback on Adaptive Background Learning

  • Aristodemos Pnevmatikakis
  • Lazaros Polymenakos
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4299)


This paper proposes novel algorithms and system architecture for tracking targets in video streams. The proposed system comprises a variation of Stauffer’s adaptive background algorithm with spacio-temporal adaptation of the learning parameters and a Kalman tracker in a feedback configuration. In the feed-forward path, the adaptive background module provides target evidence to the Kalman tracker. In the feedback path, the Kalman tracker adapts the learning parameters of the adaptive background module. The proposed feedback architecture overcomes the problem of stationary targets fading into the background, commonly found in variations of Stauffer’s adaptive background algorithm and is capable of automatic initialization without the need for an initial background image.


Learning Rate Foreground Object Foreground Pixel Smart Space Shadow Detection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Waibel, Steusloff, H., Stiefelhagen, R., et al.: CHIL: Computers in the Human Interaction Loop. In: 5th International Workshop on Image Analysis for Multimedia Interactive Services (WIAMIS), Lisbon, Portugal (April 2004)Google Scholar
  2. 2.
    Pnevmatikakis, A., Talantzis, F., Soldatos, J., Polymenakos, L.: Robust Multimodal Audio-Visual Processing for Advanced Context Awareness in Smart Spaces. In: Artificial Intelligence Applications and Innovations, Peania, Greece (June 2006)Google Scholar
  3. 3.
    Ekenel, H., Pnevmatikakis, A.: Video-Based Face Recognition Evaluation in the CHIL Project – Run 1. In: Int. Conf. Pattern Recognition, Southampton, UK, March 2006, pp. 85–90 (2006)Google Scholar
  4. 4.
    McIvor: Background Subtraction Techniques. Image and Vision Computing, New Zealand (2000)Google Scholar
  5. 5.
    Stauffer, C., Grimson, W.E.L.: Learning patterns of activity using real-time tracking. IEEE Trans. on Pattern Anal. and Machine Intel. 22(8), 747–757 (2000)CrossRefGoogle Scholar
  6. 6.
    KaewTraKulPong, P., Bowden, R.: An Improved Adaptive Background Mixture Model for Real-time Tracking with Shadow Detection. In: Proc. 2nd European Workshop on Advanced Video Based Surveillance Systems (AVBS 2001) (September 2001)Google Scholar
  7. 7.
    Landabaso, J.L., Pardas, M.: Foreground regions extraction and characterization towards real-time object tracking. In: Renals, S., Bengio, S. (eds.) MLMI 2005. LNCS, vol. 3869, pp. 241–249. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Kalman, R.E.: A New Approach to Linear Filtering and Prediction Problems. Transactions of the ASME – Journal of Basic Engineering 82(series D), 35–45 (1960)Google Scholar
  9. 9.
    Xu, L.-Q., Landabaso, J.L., Pardas, M.: Shadow Removal with Blob-Based Morphological Reconstruction for Error Correction. In: IEEE International Conference on Acoustics, Speech, and Signal Processing (March 2005)Google Scholar
  10. 10.
    Herman, S.-M.: A particle filtering approach to joint passive radar tracking and target classification, Ph.D thesis, University of Illinois at Urbana-Champaign, pp. 51–54 (2002)Google Scholar
  11. 11.
    Bloom, H.A.P., Bar-Shalom, Y.: The interactive multiple model algorithm for systems with Markovian switching coefficients. IEEE Trans. Automatic Control 33, 780–783 (1988)CrossRefGoogle Scholar
  12. 12.
    Watson, G.A., Blair, W.D.: IMM algorithm for tracking targets that maneuver through coordinated turns. In: Proc. of SPIE Signal and Data Processing of Small Targets, vol. 1698, pp. 236–247 (1992)Google Scholar
  13. 13.
    Forsyth, D., Ponce, J.: Computer Vision - A Modern Approach, pp. 489–541. Prentice Hall, Englewood Cliffs (2002)Google Scholar
  14. 14.
    Isard, M., Blake, A.: CONDENSATION - conditional density propagation for visual tracking. Int. J. Computer Vision 29, 5–28 (1998)CrossRefGoogle Scholar
  15. 15.
    Zhang, Z.: A Flexible New Technique for Camera Calibration, Technical Report MSR-TR-98-71, Microsoft Research (August 2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Aristodemos Pnevmatikakis
    • 1
  • Lazaros Polymenakos
    • 1
  1. 1.Autonomic and Grid ComputingAthens Information TechnologyPeaniaGreece

Personalised recommendations