Mind Out of Programmable Matter: Exploring Unified Models of Emergent Autonomy

  • M. Randles
  • A. Taleb-Bendiab
  • P. Miseldine
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3825)


This article advocates the need for a radical rethink of software agent technology by investigating the mechanisms through which knowledge, deliberation, action and control interact to form truly intelligent autonomous agents, be they deliberative, intentional or purely reactive automata/ particles/actors. Using sound logical formal modelling techniques, this work attempts to propose a unified model of multi-agency, which integrates and consolidates various proposed software agent models including; deliberative, cognitive, collectivist and individualist agent perspectives. In particular, the paper focuses on the formal semantics of model-based and emergent regulatory structure of autonomic self-regenerative systems, agents or particles (swarm intelligence). In addition, the paper uses our new scripting language – Neptune and associated development environment, which transforms formal require-ments models of a given agency to executable code.


Swarm Intelligence Emergent Behaviour Autonomic Computing Intelligent Behaviour Situation Calculus 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Minsky, M.: Building Intelligent Machines, Speech at Boston University May 16, 2003 (2003), http://wiredvig.wired.com/news/technology/0,1282,58714,00.html
  2. 2.
    Schmidt, A., van Laerhoven, K.: How to Build Smart Appliances. IEEE Personal Communications 8(4), 66–71 (2001)CrossRefGoogle Scholar
  3. 3.
    Horn, P.: Autonomic Computing: IBM Perspective on the State of Information Technology. IBM T.J. Watson Labs, New York (2001), http://www.research.ibm.com/autonomic Google Scholar
  4. 4.
    Jennings, N., Wooldridge, M.: Agent-Oriented Software Engineering. In: Bradshaw, J. (ed.) Handbook of Agent Technology. AAAI/MIT Press, Cambridge (2000)Google Scholar
  5. 5.
    Burgess, M.: Computer Immunology. In: Proceeding of 12th Systems Administration Conference (LIS 1998), pp. 283–298 (1998)Google Scholar
  6. 6.
    Lim, A.: Distributed Services for Information Dissemination in Self-Organizing Sensor Networks. Special Issue on Distributed Sensor Networks for Real-Time Systems with Adaptive Reconfiguration, Journal of Franklin Institute, Elsevier Science Publisher 338, 707–727 (2001)MATHGoogle Scholar
  7. 7.
    Dreyfus, H.L.: What Computers Still Can’t Do: A Critique of Artificial Reason. The MIT Press, Cambridge (1993)Google Scholar
  8. 8.
    Randles, M., Taleb-Bendiab, A., Miseldine, P., Laws, A.: Adjustable Deliberation for Self- Managing Systems. In: Proc. 12th Annual IEEE International Conference and Workshop on the Engineering of Computer Based Systems (ECBS 2005), Washington MD, April 2005, pp. 449–456 (2005)Google Scholar
  9. 9.
    Laws, A.G., Taleb-Bendiab, A., Wade, S.J., Reilly, D.: From Wetware to Software: A Cybernetic Perspective of Self-adaptive Software. In: IWSAS 2001, pp. 257–280 (2001)Google Scholar
  10. 10.
    Beer, S.: The Viable System Model: its provenance, development, methodology and pathology. In: Espejo, R., Harnden, R. (eds.) The Viable System Model: Interpretations and Applications of Stafford Beer’s VSM. John Wiley and Sons Ltd., Great Britain (1989)Google Scholar
  11. 11.
    Bratman, M.E., Israel, D.J., Pollack, M.E.: Plans and Resource-Bounded Practical Reasoning. Computational Intelligence 4(4), 349–355 (1988)CrossRefGoogle Scholar
  12. 12.
    Ohsawa, Y. (ed.): Proceeding of the 1st International Workshop on Chance Discovery. Japanese Society for Artificial Intelligence (2001)Google Scholar
  13. 13.
    Randles, M., Taleb-Bendiab, A., Miseldine, P.: Using Stochastic Situation Calculus to Formalise Danger Signals for Autonomic Computing. In: Proceedings of PGNet 2005. Liverpool John Moores University (2005)Google Scholar
  14. 14.
    Glansdorff, P., Prigogine, I.: Thermodynamic Study of Structure, Stability, and Fluctuations. Wiley, New York (1978)MATHGoogle Scholar
  15. 15.
    Hadeli, P.V., Kollingbaum, M., van Brussel, H.: Multi-agent Coordination and Control using Stigmergy. Computers in Industry 53(1), 75–96 (2004)CrossRefGoogle Scholar
  16. 16.
    Searle, J.R.: The Rediscovery of the Mind. The MIT Press, Cambridge (1992)Google Scholar
  17. 17.
    Smith, B.C.: Reflection and Semantics in a Procedural Language PhD. Thesis. MIT, Cambridge (1982)Google Scholar
  18. 18.
    Halpern, J.Y., Moses, Y.: Knowledge and Common Knowledge in a Distributed Environment. Journal of the ACM 37(3), 549–587 (1990)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Levesque, H.J., Pirri, F., Reiter, R.: Foundations for the Situation Calculus. Linköping Electronic Articles in Computer and Information Science 3(18) (1998), http://www.ep.liu.se/ea/cis/1998/018/
  20. 20.
    Miseldine, P., Taleb-Bendiab, A.: Rainbow: An Approach to Facilitate Restorative Functionality within Distributed Autonomic Systems. In: Proceedings of PGNet 2005. Liverpool John Moores University (2005)Google Scholar
  21. 21.
    Goldstein, S.: Claytronics: A scalable basis for future robots. In: Robosphere 2004, Moffett Field, CA (November 2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • M. Randles
    • 1
  • A. Taleb-Bendiab
    • 1
  • P. Miseldine
    • 1
  1. 1.School of Computing and Mathematical ScienceLiverpool John Moores UniversityLiverpoolUK

Personalised recommendations