Towards an Emotional Decision-Making

  • Mickaël Camus
  • Alain Cardon
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3825)


Industrial need new technologies to make evolved methods, strategy and capacity. Decision-making plays an important role in the case of the robot evolving in an instable environment, and enables us to decreasing the human factor in the control system. This paper presents a model based on brain construction to give a restricted emotion to a machine in order to control a multitude of entities. Emotion permits to make a rapid decision in a hostile environment. The method used to build this system is based on Massive MultiAgent System (Massive MAS). It enables us to have a vast number of entities with an asynchronous communication.The morphologic aspect is used to observe the agents behavior with the aim to generate a restricted emotion in order to make an action plan.


Multiagent System Unmanned Aerial Vehicle Systemic Loop Message Passing Hostile Environment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cardon, A.: Modéliser et concevoir une machine pensante. Vuibert (2004)Google Scholar
  2. 2.
    Bechara, A., H.D., Damasio, A.: Emotion, decision making and the orbitofrontal cortex. Cerebral Crotex 10 (2000)Google Scholar
  3. 3.
    Lerner, J., Keltner, D.: Beyond valence: Toward a model of emotion-specific influences on judgment and choice. Cognition an Emotion 14, 473–493 (2000)CrossRefGoogle Scholar
  4. 4.
    Roy, P.V.: Oz/mozart environment (2002)Google Scholar
  5. 5.
    Roy, P., Haridi, S.: Concepts, Techniques, and Models of Computer Programming. MIT Press, Cambridge (2004)Google Scholar
  6. 6.
    Camus, M., El-Kadhi, N.: Generic simultor environment for realistic simulation – autonomous entity proof and emotion in decision making. Journal of Systemics, Cybernetics and Informatics 2 (2004)Google Scholar
  7. 7.
    Purves, D., Augustine, G.J., Fitzpatrick, D., Katz, L.C., LaMantia, A.-S., McNamara, J.O., Williams, M.S.: Neurosciences. De Boeck Universite (2003)Google Scholar
  8. 8.
    Cardon, A.: Conscience artificielle et systèmes adaptatifs. Eyrolles (2000)Google Scholar
  9. 9.
    Kolb, N., Whishaw, I.: Cerveau et Comportement. De Boeck Universite (2001)Google Scholar
  10. 10.
    Campagne, J., Cardon, A.: Using morphology to analyse and steer large multi-agents systems at runtime. In: Selmas 2004. IEEE, Edinburg (2004)Google Scholar
  11. 11.
    Cardon, A.: Design and behavior of a massive organization of agents. Design of Intelligent Multi-Agent Systems, Human-Centredness, Architectures, Learning and Adaptation 162, 133–190 (2004)Google Scholar
  12. 12.
    Channouf, A., Rouan, G.: Emotions et Cognitions. De Boeck Universite (2002)Google Scholar
  13. 13.
    Thom, R.: Modèles mathématiques de la morphogenèse. Christian Bourgois (1989)Google Scholar
  14. 14.
    Campagne, J.: Morphologie et système multi-agent. PhD thesis, Université Pierre et Marie Curie draft (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Mickaël Camus
    • 1
    • 2
  • Alain Cardon
    • 2
  1. 1.L.E.R.I.A., {Epitech.}Le Kremlin BicêtreFrance
  2. 2.LIP6 UMR 7606 Paris VIParis

Personalised recommendations