Hybrid System Reachability-Based Analysis of Dynamical Agents

  • Eric Aaron
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3825)


This paper describes a hybrid dynamical system-based approach to formalizing and mechanizing analyses of dynamical agents, i.e., situated, embodied actors that continuously respond to their environment. As an example, the paper describes a class of formalized metrics for reasoning about the relative difficulties of agent navigation in various environments —not just whether one scenario is more difficult than another, but how much more difficult a scenario might be— and presents results of relative difficulty reasoning using a specific example metric. This illustrates that qualitative or heuristic agent properties, which are commonly unformalized and imprecise, may be formalized and rigorously analyzed using this approach. The paper also discusses the potential implementation of relative difficulty metrics in meta-intelligent agents.


Mobile Robot Hybrid System Initial Region Reachability Analysis Dynamical Agent 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tomlin, C., Pappas, G.J., Sastry, S.: Conflict resolution for air traffic management: A study in muti-agent hybrid systems. IEEE Transactions on Automatic Control 43(4), 509–521 (1998)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Pepyne, D., Cassandras, C.: Hybrid systems in manufacturing. Proceedings of the IEEE 88, 1108–1123 (2000)CrossRefGoogle Scholar
  3. 3.
    Egerstedt, M., Hu, X.: A hybrid control approach to action coordination for mobile robots. Automatica 38(1), 125–130 (2002)CrossRefMATHGoogle Scholar
  4. 4.
    Aaron, E., Ivančić, F., Metaxas, D.: Hybrid system models of navigation strategies for games and animations. In: Tomlin, C.J., Greenstreet, M.R. (eds.) HSCC 2002. LNCS, vol. 2289, pp. 7–20. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. 5.
    Aaron, E., Sun, H., Ivančić, F., Metaxas, D.: A hybrid dynamical systems approach to intelligent low-level navigation. In: Proceedings of Computer Animation, pp. 154–163 (2002)Google Scholar
  6. 6.
    Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge (2000)Google Scholar
  7. 7.
    Alur, R., Henzinger, T., Lafferriere, G., Pappas, G.: Discrete abstractions of hybrid systems. Proceedings of the IEEE 88, 971–984 (2000)CrossRefGoogle Scholar
  8. 8.
    Asarin, E., Dang, T., Maler, O.: The d/ dt tool for verification of hybrid systems. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 365–370. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. 9.
    Chutinan, A., Krogh, B.H.: Verification of polyhedral-invariant hybrid automata using polygonal flow pipe approximations. In: Vaandrager, F.W., van Schuppen, J.H. (eds.) HSCC 1999. LNCS, vol. 1569, pp. 76–90. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  10. 10.
    Dang, T.: Verification and Synthesis of Hybrid Systems. PhD thesis, Verimag, Institut National Polytechnique de Grenoble (2000)Google Scholar
  11. 11.
    Kurzhanski, A., Varaiya, P.: Ellipsoidal techniques for reachability analysis. In: Lynch, N.A., Krogh, B.H. (eds.) HSCC 2000. LNCS, vol. 1790, pp. 202–214. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  12. 12.
    Goldenstein, S., Karavelas, M., Metaxas, D., Guibas, L., Aaron, E., Goswami, A.: Scalable nonlinear dynamical systems for agent steering and crowd simulation. Computers And Graphics 25(6), 983–998 (2001)CrossRefGoogle Scholar
  13. 13.
    Alur, R., Grosu, R., Lee, I., Sokolsky, O.: Compositional refinement for hierarchical hybrid systems. In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC 2001. LNCS, vol. 2034, pp. 33–48. Springer, Heidelberg (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Eric Aaron
    • 1
  1. 1.Department of Computer ScienceWesleyan UniversityMiddletownUSA

Personalised recommendations