On the Logic of Medical Decision Support

  • Patrik Eklund
  • Johan Karlsson
  • Jan Rauch
  • Milan Šimůnek
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4342)


Guideline development, implementation, utility and adherence require intelligence and multimedia to interact in decision support environments. However, efforts to combine all these aspects and to connect solutions into a effective, efficient and productive environment are rare. In this paper we use a regional health care perspective on maintenance and analysis of data, information and knowledge. Examples are drawn from cardiac diseases. Analysis and development is viewed from by-pass surgery point of view. Association rules are used for analysis, and we show how these rules take logical forms so as to prepare for development of guidelines.


Association Rule Clinical Decision Support System Hypertension Treatment Guideline Implementation Guideline Adherence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Achour, S., Dojat, M., Rieux, C., Bierling, P., Lepage, E.: A UMLS-Based Knowledge Acquisition Tool for Rule-Based Clinical Decision Support Systems Construction. J. Amer. Med. Inform. Assoc. 8(4), 351–360 (2001)Google Scholar
  2. 2.
    Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., Verkamo, A.I.: Fast discovery of association rules. In: Fayyad, U.M., et al. (eds.) Advances in Knowledge Discovery and Data Mining. AAAI Press, Menlo ParkGoogle Scholar
  3. 3.
    Anagnostou, T., Remzi, M., Lykourinas, M., Djavan, B.: Artificial neural networks for decision-making in urologic oncology. European Urology 43, 596–603 (2003)Google Scholar
  4. 4.
    Bury, J., Fox, J., Seyfang, A.: The ProForma guideline specification language: Progress and prospects. In: First European Workshop on Computer-based Support for Clinical Guidelines and Protocols, pp. 1–14 (2000)Google Scholar
  5. 5.
    Church, A.: Introduction to mathematical logic, Princeton, vol. 1 (1956)Google Scholar
  6. 6.
    Cohen, A., Stavri, P., Hersh, W.: A categorization and analysis of the criticisms of Evidence-Based Medicine. International Journal of Medical Informatics 73, 35–43 (2004)CrossRefGoogle Scholar
  7. 7.
    Davidoff, F., Haynes, B., Sackett, D., Smith, R.: Evidence based medicine. British Medical Journal 310, 1085–1086 (1995)Google Scholar
  8. 8.
    Einbinder, J.S., Scully, K.W., Pates, R.D., Schubart, J.R., Reynolds, R.E.: Case study: A data warehouse for an academic medical center. J. Healthcare Information Management 15(2), 165–175 (2001)Google Scholar
  9. 9.
    Eklund, P.: Network Size Versus Preprocessing. In: Yager, R., Zadeh, L., Van Reinhold, N. (eds.) Fuzzy Sets, Neural Networks and Soft Computing, New York, pp. 250–264 (1994)Google Scholar
  10. 10.
    Eklund, P., Klawonn, F.: Neural Fuzzy Logic Programming. IEEE Trans. Neural Networks 3(5), 815–818 (1992)CrossRefGoogle Scholar
  11. 11.
    Eklund, P., Karlsson, J., Rauch, J., Simunek, M.: Computational Coronary Artery Bypass Grafting. In: Proc. 6th Int. Conf. on Computational intelligence and Multimedia Applications (ICCIMA 2005), August 16-18, 2005, pp. 138–144. IEEE Computer Society, Washington (2005)CrossRefGoogle Scholar
  12. 12.
    Eklund, P., Lindgren, H.: Towards Dementia Diagnosis Logic. In: Proc. 11th Int. Conf. Information Processing and Management of Uncertainty in Knowledge-based Systems (IPMU 2006), Paris, France (July 2-7, 2006)Google Scholar
  13. 13.
    Field, M., Lohr, K.: Clinical practice guidelines: directions for a new program. In: Attributes of good practice guidelines, pp. 53–77. National Academy Press, Washington (1990)Google Scholar
  14. 14.
    Hájek, P., Havránek, T.: Mechanising Hypothesis Formation - Mathematical Foundations for a General Theory. Springer, Heidelberg (1978)Google Scholar
  15. 15.
    Hájek, P. (guest editor): Second special issue on GUHA, International Journal of Man-Machine Studies (1981)Google Scholar
  16. 16.
    Hájek, P., Sochorová, A., Zvárová, J.: GUHA for personal computers. Computational Statistics & Data Analysis 19, 149–153 (1995)MATHCrossRefGoogle Scholar
  17. 17.
    Hripcsak, G.: Writing Arden syntax medical logic modules. Comput. Biol. Med. 24, 331–363 (1994)CrossRefGoogle Scholar
  18. 18.
    Inmon, W.: Building the data warehouse, 2nd edn. (1996)Google Scholar
  19. 19.
    Karlsson, J., Eklund, P.: Data mining and structuring of executable data analysis reports: Guideline development and implementation in a narrow sense. Medical Infobahn for Europe, Stud. Health Technol. Inform. 77, 790–794 (2000)Google Scholar
  20. 20.
    Karlsson, J., Eklund, P., Hallgren, C.-G., Sjödin, J.: Data warehousing as a basis for web-based documentation of data mining and analysis. Medical Informatics Europe 1999, Stud. Health Technol. Inform. 68, 423–427 (1999)Google Scholar
  21. 21.
    Kerkri, E., Quantin, C., Yetongnon, K., Allaert, F.A., Dusserre, L.: Application of the medical data warehousing architecture epidware to epidemiological follow-up. Stud. Health Technol. Inform. 68, 414–418 (1999)Google Scholar
  22. 22.
    Kircher, A., Antonsson, J., Babic, A., Casimir-Ahn, H.: Quantitative data analysis for exploring outcomes in cardiac surgery. Studies in Health Technology and Informatics 68, 457–460 (1990)Google Scholar
  23. 23.
    Lindgren, H., Eklund, P.: Logic of dementia guidelines in a Probabilistic Argumentation Framework. In: Godo, L. (ed.) ECSQARU 2005. LNCS, vol. 3571, pp. 341–352. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  24. 24.
    Parsons, S.: A Proof Theoretic Approach to Qualitative Probabilistic Reasoning. Int. J. Approximate Reasoning 19, 265–297 (1998)MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Pearson, S., Margolis, C., Davis, S., Schreier, L., Sokol, H., Gottlieb, L.: Is consensus reproducible? A study of an algorithmic guidelines development process. Medical Care 33, 643–660 (1995)CrossRefGoogle Scholar
  26. 26.
    Persson, M., Bohlin, J., Eklund, P.: Development and maintenance of guideline-based decision support for pharmacological treatment of hypertension. Comp. Meth. Progr. Biomed. 61, 209–219 (2000)CrossRefGoogle Scholar
  27. 27.
    Persson, M., Mjörndal, T., Carlberg, B., Bohlin, J., Lindholm, L.H.: Evaluation of a computer-based decision support system for treatment of hypertension with drugs: Retrospective, nonintervention testing of cost and guideline adherence. Internal Medicine 247, 87–93 (2000)CrossRefGoogle Scholar
  28. 28.
    Puddu, P.-E., Brancaccio, G., Leacche, M., Monti, F., Lanti, M., Menotti, A., Gaudio, C., Papalia, U., Marino, B.: Prediction of early and delayed post-operative deaths after coronary artery bypass surgery alone in Italy. Italian Heart Journal 3, 166–181 (2002)Google Scholar
  29. 29.
    Rauch, J.: Some Remarks on Computer Realisations of GUHA Procedures. International Journal of Man-Machine Studies 10, 23–28 (1978)CrossRefGoogle Scholar
  30. 30.
    Rauch, J.: Logic of Association Rules. Applied Intelligence 22, 9–28 (2005)MATHCrossRefGoogle Scholar
  31. 31.
    Rauch, J.: Definability of Association Rules in Predicate Calculus. In: Lin, T.Y., Ohsuga, S., Liau, C.J., Hu, X. (eds.) Foundations and Novel Approaches in Data Mining, pp. 23–40. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  32. 32.
    Rauch, J., Šim\o{u}nek, M.: Alternative Approach to Mining Association Rules. In: Lin, T.Y., Ohsuga, S., Liau, C.J., Tsumoto, S. (eds.) Data Mining: Foundations, Methods, and Applications, pp. 219–238. Springer, Heidelberg (2005)Google Scholar
  33. 33.
    Diagnostic and Statistical Manual of Mental Disorders, Text Revision (DSM-IV-TR), 4th edn., American Psychiatric Association (1994)Google Scholar
  34. 34.
    The sixth report of the joint national committee on prevention detection, evaluation, and treatment of high blood pressure, Technical Report 98-4080, National Institutes of Health (1997)Google Scholar
  35. 35.
  36. 36.
    van Wijk, M., van der Lei, J., Mosseveld, M., Bohnen, A., van Bemmel, J.: Compliance of General Practitioners with a Guideline-based Decision Support System for Ordering Blood Tests. Journal of Clinical Chemistry 48, 55–60 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Patrik Eklund
    • 1
  • Johan Karlsson
    • 1
  • Jan Rauch
    • 2
  • Milan Šimůnek
    • 3
  1. 1.Department of Computing ScienceUmeå UniversityUmeåSweden
  2. 2.Faculty of Informatics and StatisticsUniversity of EconomicsPragueCzech Republic
  3. 3.Institute of Computer ScienceAcademy of Sciences of the Czech Republic 

Personalised recommendations