Investigating Finite Models of Non-classical Logics with Relation Algebra and RelView

  • Rudolf Berghammer
  • Renate A. Schmidt
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4342)


In computer science, scenarios with interacting agents are often developed using modal logic. We show how to interpret modal logic of knowledge in relation algebra. This allows the use of the RelView tool for the purpose of investigating finite models and for visualizing certain properties. Our approach is illustrated with the well-known ‘muddy children’ puzzle using modal logic of knowledge. We also sketch how to treat other non-classical logics in this way. In particular, we explore our approach for computational tree logic and illustrate it with the ‘mutual exclusion’ example.


Modal Logic Transitive Closure Critical Section Accessibility Relation Mutual Exclusion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Berghammer, R., Behnke, R., Meyer, E., Schneider, P.: RELVIEW - A system for calculating with relations and relational programming. In: Astesiano, E. (ed.) ETAPS 1998 and FASE 1998. LNCS, vol. 1382, pp. 318–321. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  2. 2.
    Berghammer, R., Kempf, P., Schmidt, G., Ströhlein, T.: Relational algebra and logic of programs. In: Andréka, H., Monk, J.D., Németi, I. (eds.) Algebraic Logic. Colloq. Math. Soc. J. Bolyai, vol. 54, pp. 37–58. North-Holland, Amsterdam (1991)Google Scholar
  3. 3.
    Berghammer, R., Leoniuk, B., Milanese, U.: Implementation of relational algebra using binary decision diagrams. In: de Swart, H. (ed.) RelMiCS 2001. LNCS, vol. 2561, pp. 241–257. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    Berghammer, R., Neumann, F.: RelView – An OBDD-based Computer Algebra system for relations. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2005. LNCS, vol. 3718, pp. 40–51. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Blackburn, P., de Rijke, M., Venema, V.: Modal Logic. Cambridge Univ. Press, Cambridge (2001)MATHGoogle Scholar
  6. 6.
    Brink, C., Britz, K., Schmidt, R.A.: Peirce algebras. Formal Aspects of Computing 6(3), 339–358 (1994)MATHCrossRefGoogle Scholar
  7. 7.
    Chellas, B.F.: Modal Logic: An Introduction. Cambridge Univ. Press, Cambridge (1980)MATHGoogle Scholar
  8. 8.
    Clarke, E., Grumberg, O., Peled, D.: Modal Checking. MIT Press, Cambridge (2000)Google Scholar
  9. 9.
    Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning about knowledge. MIT Press, Cambridge (1995)MATHGoogle Scholar
  10. 10.
    Goldblatt, R.: Logics of Time and Computation. In: CSLI Lecture Notes, vol. 7, Chicago Univ. Press, Chicago (1987)Google Scholar
  11. 11.
    Hughes, G.E., Cresswell, M.J.: A New Introduction to Modal Logic. Routledge, London (1996)Google Scholar
  12. 12.
    Huth, M., Ryan, M.: Logic in Computer Science. In: Modelling and Reasoning About Systems. Cambridge Univ. Press, Cambridge (2000)Google Scholar
  13. 13.
    Jónsson, B., Tarski, A.: Boolean algebras with operators, Part I. American Journal of Mathematics 73, 891–939 (1951)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Nabialek, W., Niewiadomski, A., Penczek, W., Polrola, A., Szreter, M.: Verics 2004: A model checker for real time and multi-agent systems. In: Proc. International Workshop on Concurrency, Specification, and Programming. Informatik-Berichte, vol. 170, pp. 88–99. Humbold University, Berlin (2004)Google Scholar
  15. 15.
    Kacprzak, M., Lomusico, A., Niewiadomski, A., Szreter, M., Penczek, W., Raimondi, F.: Comparing BDD and SAT based techniques for model checking Chaum’s Dining Cryptographers protocol. Fundamenta Informaticae (to appear, 2006)Google Scholar
  16. 16.
    Kozen, D.: A representation theorem for models of *-free PDL. In: de Bakker, J.W., van Leeuwen, J. (eds.) ICALP 1980. LNCS, vol. 85, pp. 351–362. Springer, Heidelberg (1980)Google Scholar
  17. 17.
    Leoniuk, B.: ROBDD-based implementation of relational algebra with applications (in German). Ph.D. thesis, Institut für Informatik und Praktische Mathematik, Universität Kiel (2001)Google Scholar
  18. 18.
    Lomuscio, A., Raimondi, F.: Mcmas: a tool for verifying multi-agent systems. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp. 450–454. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  19. 19.
    Meyer, J.-J.C., van der Hoek, W.: Epistemic Logic for AI and Computer Science. Cambridge Univ. Press, Cambridge (1995)MATHCrossRefGoogle Scholar
  20. 20.
    Milanese, U.: On the implementation of a ROBDD-based tool for the manipulation and visualization of relations (in German). Ph.D. thesis, Institut für Informatik und Praktische Mathematik, Universität Kiel (2003)Google Scholar
  21. 21.
    Müller-Olm, M., Schmidt, D., Steffen, B.: Model-checking: A tutorial introduction. In: Cortesi, A., Filé, G. (eds.) SAS 1999. LNCS, vol. 1694, pp. 330–354. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  22. 22.
    Ng, K.C., Tarski, A.: Relation algebras with transitive closure, abstract 742-02-09. Notices Amer. Math. Soc., A29–A30 (1977)Google Scholar
  23. 23.
    Orlowska, E.: Relational formalisation of nonclassical logics. In: Brink, C., Kahl, W., Schmidt, G. (eds.) Relational Methods in Computer Science. Advances in Computing, pp. 90–105. Springer, Wien (1997)Google Scholar
  24. 24.
    Pratt, V.R.: Dynamic algebras: Examples, constructions, applications. Technical Report MIT/LCS/TM-138, MIT Laboratory for Computer Science (1979)Google Scholar
  25. 25.
    Schmidt, G., Ströhlein, T.: Relations and Graphs. Discrete Mathematics for Computer Scientists. Springer, Berlin (1993)MATHGoogle Scholar
  26. 26.
    Tarski, A.: On the calculus of relations. J. Symbolic Logic 6(3), 73–89 (1941)MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pacific J. Math. 5, 285–309 (1955)MATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Rudolf Berghammer
    • 1
  • Renate A. Schmidt
    • 2
  1. 1.Institut für InformatikChristian-Albrechts-Universität KielKielGermany
  2. 2.School of Computer ScienceUniversity of ManchesterManchesterUnited Kingdom

Personalised recommendations