Aggregation on Bipolar Scales

  • Michel Grabisch
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4342)


The paper addresses the problem of extending aggregation operators typically defined on [0,1] to the symmetric interval [−1,1], where the “0” value plays a particular role (neutral value). We distinguish the cases where aggregation operators are associative or not. In the former case, the “0” value may play the role of neutral or absorbant element, leading to pseudo-addition and pseudo-multiplication. We address also in this category the special case of minimum and maximum defined on some finite ordinal scale. In the latter case, we find that a general class of extended operators can be defined using an interpolation approach, supposing the value of the aggregation to be known for ternary vectors.


Additive Generator Aggregation Operator Neutral Element Fuzzy Measure Computation Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Benvenuti, P., Mesiar, R., Vivona, D.: Monotone set functions-based integrals. In: Pap, E. (ed.) Handbook of Measure Theory, pp. 1329–1379. Elsevier Science, Amsterdam (2002)CrossRefGoogle Scholar
  2. 2.
    Calvo, T., De Baets, B., Fodor, J.: The functional equations of alsina and frank for uninorms and nullnorms. Fuzzy Sets and Systems 101, 15–24 (2001)Google Scholar
  3. 3.
    Calvo, T., Mayor, G., Mesiar, R. (eds.): Aggregation operators: new trends and applications. Studies in Fuzziness and Soft Computing. Physica Verlag, Heidelberg (2002)MATHGoogle Scholar
  4. 4.
    Denneberg, D.: Non-Additive Measure and Integral. Kluwer Academic, Dordrecht (1994)MATHGoogle Scholar
  5. 5.
    Denneberg, D., Grabisch, M.: Measure and integral with purely ordinal scales. J. of Mathematical Psychology 48, 15–27 (2004)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Fuchs, L.: Partially Ordered Algebraic Systems. Addison-Wesley, Reading (1963)MATHGoogle Scholar
  7. 7.
    Grabisch, M.: Symmetric and asymmetric fuzzy integrals: the ordinal case. In: 6th Int. Conf. on Soft Computing (Iizuka 2000), Iizuka, Japan (October 2000)Google Scholar
  8. 8.
    Grabisch, M.: The symmetric Sugeno integral. Fuzzy Sets and Systems 139, 473–490 (2003)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    M. Grabisch. The Choquet integral as a linear interpolator. In 10th Int. Conf. on Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU 2004), pages 373–378, Perugia, Italy, July 2004.Google Scholar
  10. 10.
    Grabisch, M.: The Möbius function on symmetric ordered structures and its application to capacities on finite sets. Discrete Mathematics 287(1-3), 17–34 (2004)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Grabisch, M., De Baets, B., Fodor, J.: The quest for rings on bipolar scales. Int. J. of Uncertainty, Fuzziness, and Knowledge-Based Systems 12(4), 499–512 (2004)MATHCrossRefGoogle Scholar
  12. 12.
    Grabisch, M., Labreuche, Ch.: Bi-capacities for decision making on bipolar scales. In: EUROFUSE Workshop on Informations Systems, Varenna, Italy, pp. 185–190 (September 2002)Google Scholar
  13. 13.
    Grabisch, M., Labreuche, C.: Fuzzy measures and integrals in MCDA. In: Figueira, J., Greco, S., Ehrgott, M. (eds.) Multiple Criteria Decision Analysis, pp. 563–608. Kluwer Academic Publishers, Dordrecht (2004)Google Scholar
  14. 14.
    Grabisch, M., Labreuche, C.: Bi-capacities. Part I: definition, Möbius transform and interaction. Fuzzy Sets and Systems 151, 211–236 (2005)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Grabisch, M., Labreuche, C.: Bi-capacities: towards a generalization of Cumulative Prospect Theory. J. of Mathematical Psychology (submitted) Google Scholar
  16. 16.
    Grabisch, M., Murofushi, T., Sugeno, M.: Fuzzy Measures and Integrals. Theory and Applications (edited volume). Studies in Fuzziness. Physica Verlag, Heidelberg (2000)Google Scholar
  17. 17.
    Grabisch, M., Orlovski, S.A., Yager, R.R.: Fuzzy aggregation of numerical preferences. In: Słowiński, R., Dubois, D., Prade, H. (eds.) Fuzzy Sets in Decision Analysis, Operations Research and Statistics. The Handbooks of Fuzzy Sets Series, pp. 31–68. Kluwer Academic, Dordrecht (1998)Google Scholar
  18. 18.
    Greco, S., Matarazzo, B., Słowinski, R.: Bipolar Sugeno and Choquet integrals. In: EUROFUSE Workshop on Informations Systems, Varenna, Italy, pp. 191–196 (September 2002)Google Scholar
  19. 19.
    Hájek, P.: Metamathematics of fuzzy logic. Kluwer Academic Publishers, Dordrecht (1998)MATHGoogle Scholar
  20. 20.
    Hájek, P., Havránek, T., Jiroušek, R.: Uncertain Information Processing in Expert Systems. CRC Press, Boca Raton (1992)Google Scholar
  21. 21.
    Klement, E.P., Mesiar, R., Pap, E.: Triangular Norms. Kluwer Academic Publishers, Dordrecht (2000)MATHGoogle Scholar
  22. 22.
    Mesiar, R., Komorniková, M.: Triangular norm-based aggregation of evidence under fuzziness. In: Bouchon-Meunier, B. (ed.) Aggregation and Fusion of Imperfect Information. Studies in Fuzziness and Soft Computing, pp. 11–35. Physica Verlag, Heidelberg (1998)Google Scholar
  23. 23.
    Murofushi, T., Sugeno, M.: Fuzzy t-conorm integrals with respect to fuzzy measures: generalization of Sugeno integral and Choquet integral. Fuzzy Sets & Systems 42, 57–71 (1991)MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Sander, W., Siedekum, J.: Multiplication, distributivity and fuzzy integral I. Kybernetika 41, 397–422 (2005)MathSciNetGoogle Scholar
  25. 25.
    Sander, W., Siedekum, J.: Multiplication, distributivity and fuzzy integral II. Kybernetika 41, 469–496 (2005)MathSciNetGoogle Scholar
  26. 26.
    Sander, W., Siedekum, J.: Multiplication, distributivity and fuzzy integral III. Kybernetika 41, 497–518 (2005)MathSciNetGoogle Scholar
  27. 27.
    Šipoš, J.: Integral with respect to a pre-measure. Math. Slovaca 29, 141–155 (1979)MATHMathSciNetGoogle Scholar
  28. 28.
    Yager, R., Rybalov, A.: Uninorm aggregation operators. Fuzzy Sets and Systems 80, 111–120 (1996)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Michel Grabisch
    • 1
  1. 1.Université Paris I – Panthéon-Sorbonne, CERMSEMParisFrance

Personalised recommendations