Lattice-Based Relation Algebras II

  • Ivo Düntsch
  • Ewa Orłowska
  • Anna Maria Radzikowska
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4342)


We present classes of algebras which may be viewed as weak relation algebras, where a Boolean part is replaced by a not necessarily distributive lattice. For each of the classes considered in the paper we prove a relational representation theorem.


Distributive Lattice Representation Theorem Residuated Lattice Relation Algebra Irreducible Element 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Allwein, G., Dunn, J.M.: Kripke models for linear logic. J. Symb. Logic 58, 514–545 (1993)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Blount, K., Tsinaksis, C.: The structure of residuated lattices. Int. J. of Algebra Comput. 13(4), 437–461 (2003)MATHCrossRefGoogle Scholar
  3. 3.
    Demri, S., Orłowska, E.: Incomplete Information: Structure, Inference, Complexity. In: EATCS Monographs in Theoretical Computer Science. Springer, Heidelberg (2002)Google Scholar
  4. 4.
    Dunn, J.M.: Gaggle theory: an abstraction of Galois connections and residuation, with application to nagation, implication and various logical operators. LNCS (LNAI), vol. 478. 31–51, Heidelberg (2001)Google Scholar
  5. 5.
    Düntsch, I. (1994). Rough relation algebras. Fundamenta Informaticae 21, 321–331.MATHMathSciNetGoogle Scholar
  6. 6.
    Düntsch, I., Orłowska, E.: Beyond modalities: sufficiency and mixed algebras. In: Orłowska, E., Szałas, A. (eds.) Relational Methods for Computer Science Applications, pp. 263–285. Physica, Heidelberg (2001)Google Scholar
  7. 7.
    Düntsch, I., Orłowska, E.: Boolean algebras arising from information systems. In: Adamowicz, Z., Artemov, S., Niwiński, D., Orłowska, E., Romanowska, A., Woleński, J. (eds.) Annals of Pure and Applied Logic, Provinces of Logic Determined, Essays in the memory of Alfred Tarski. Special issue, vol. 127(1–3), pp. 77–98 (2004)Google Scholar
  8. 8.
    Düntsch, I., Orłowska, E., Radzikowska, A.M.: Lattice–based relation algebras and their representability. In: de Swart, H., Orłowska, E., Schmidt, G., Roubens, M. (eds.) Theory and Applications of Relational Structures as Knowledge Instruments. LNCS, vol. 2929, pp. 234–258. Springer, Heidelberg (2003)Google Scholar
  9. 9.
    Düntsch, I., Winter, M.: Rough relation algebras revisited. Fundamenta Informaticae (to appear, 2006)Google Scholar
  10. 10.
    Gehrke, M., Jónsson, B.: Bounded distributive lattices with operators. Mathematica Japonica 40(2), 207–215 (1994)MATHMathSciNetGoogle Scholar
  11. 11.
    Hart, J.B., Rafter, L., Tsinaksis, C.: The structure of commutative residuated lattices. Internat. J. Algebra Comput. 12(4), 509–524 (2002)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Jipsen, P., Tsinaksis, C.: A Survey of Residuated Lattices. In: Martinez, J. (ed.) Ordered algebraic structures, pp. 19–56. Kluwer Academic Publishers, Dordrecht (2003)Google Scholar
  13. 13.
    Jónsson, B., Tarski, A.: Boolean algebras with operators. Part I. American Journal of Mathematics 73, 891–936 (1951)MATHCrossRefGoogle Scholar
  14. 14.
    Orłowska, E.: Information algebras. In: GIS 1992. LNCS, vol. 639, pp. 50–65. Springer, Heidelberg (1995)Google Scholar
  15. 15.
    Orłowska, E., Radzikowska, A.M.: Information relations and opeators based on double residuated lattices. In: Proceedings of the 6th International Workshop on Relational Methods in Computer Science RelMiCS 2001, pp. 185–199 (2001)Google Scholar
  16. 16.
    Orłowska, E., Radzikowska, A.M.: Double residuated lattices and their applications. In: de Swart, H. (ed.) RelMiCS 2001. LNCS, vol. 2561, pp. 171–189. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  17. 17.
    Orłowska, E., Vakarelov, D.: Lattice-based modal algebras and modal logics. In: Hajek, P., Valdés–Villanueva, L.M., Westerstahl, D. (eds.) Logic, Methodology and Philosophy of Science. Proceedings of the 12th International Congress, pp. 147–170. King’s College London Publications (2005)Google Scholar
  18. 18.
    Sofronie-Stokkermans, V.: Duality and canonical extensions of bounded distributive lattices with operators, and applications to the semantics of non-classical logics. Studia Logica 64 Part I, 93–122, Part II, 151–172 (2000)Google Scholar
  19. 19.
    Urquhart, A.: A topological representation theorem for lattices. Algebra Universalis 8, 45–58 (1978)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Ivo Düntsch
    • 1
  • Ewa Orłowska
    • 2
  • Anna Maria Radzikowska
    • 3
  1. 1.Brock UniversitySt. CatharinesCanada
  2. 2.National Institute of TelecommunicationsWarsawPoland
  3. 3.Faculty of Mathematics and Information ScienceWarsaw University of TechnologyWarsawPoland

Personalised recommendations