Encoding Strategies in the Lambda Calculus with Interaction Nets

  • Ian Mackie
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4015)


Interaction nets are a graphical paradigm of computation based on graph rewriting. They have proven to be both useful and enlightening in the encoding of linear logic and the λ-calculus. This paper offers new techniques for the theory of interaction nets, with applications to the encoding of specific strategies in the λ-calculus. In particular we show how to recover the usual call-by-value and call-by-name reduction strategies from general encodings.


Normal Form Reduction Strategy Free Edge Linear Logic Reduction Sequence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abramsky, S.: Computational Interpretations of Linear Logic. Theoretical Comput. Sci. 111, 3–57 (1993)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Fernández, M., Mackie, I.: Interaction nets and term rewriting systems. Theoretical Computer Science 190(1), 3–39 (1998)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Fernández, M., Mackie, I.: A calculus for interaction nets. In: Nadathur, G. (ed.) PPDP 1999. LNCS, vol. 1702, pp. 170–187. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  4. 4.
    Fernández, M., Mackie, I.: Closed reductions in the λ-calculus. In: Flum, J., Rodríguez-Artalejo, M. (eds.) CSL 1999. LNCS, vol. 1683, pp. 220–234. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  5. 5.
    Fernández, M., Mackie, I.: Packing interaction nets: Applications to linear logic and the lambda calculus. In: Frias, M., Heintz, J. (eds.) Proceedings of the 5th Argentinian Workshop of Theoretical Computer Science (WAIT 2001), Anales JAIIO, vol. 30, pp. 91–107 (September 2001)Google Scholar
  6. 6.
    Girard, J.-Y.: Linear Logic. Theoretical Computer Science 50(1), 1–102 (1987)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Gonthier, G., Abadi, M., Lévy, J.-J.: The geometry of optimal lambda reduction. In: Proceedings of the 19th ACM Symposium on Principles of Programming Languages (POPL 1992), pp. 15–26. ACM Press, New York (1992)Google Scholar
  8. 8.
    Gonthier, G., Abadi, M., Lévy, J.-J.: Linear logic without boxes. In: Proceedings of the 7th IEEE Symposium on Logic in Computer Science (LICS 1992), pp. 223–234. IEEE Press, Los Alamitos (1992)CrossRefGoogle Scholar
  9. 9.
    Lafont, Y.: Interaction nets. In: Proceedings of the 17th ACM Symposium on Principles of Programming Languages (POPL 1990), pp. 95–108. ACM Press, New York (1990)Google Scholar
  10. 10.
    Lafont, Y.: From proof nets to interaction nets. In: Girard, J.-Y., Lafont, Y., Regnier, L. (eds.) Advances in Linear Logic. London Mathematical Society Lecture Note Series, vol. 222, pp. 225–247. Cambridge University Press, Cambridge (1995)CrossRefGoogle Scholar
  11. 11.
    Lafont, Y.: Interaction combinators. Information and Computation 137(1), 69–101 (1997)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Lamping, J.: An algorithm for optimal lambda calculus reduction. In: Proceedings of the 17th ACM Symposium on Principles of Programming Languages (POPL 1990), pp. 16–30. ACM Press, New York (1990)Google Scholar
  13. 13.
    Lévy, J.-J.: Réductions Correctes et Optimales dans le Lambda-Calcul. Thèse d’état, Université Paris VII (January 1978)Google Scholar
  14. 14.
    Lippi, S.: λ-calculus left reduction with interaction nets. Mathematical Structures in Computer Science 12(6) (2002)Google Scholar
  15. 15.
    Lippi, S.: Théorie et pratique des réseaux d’interaction. PhD thesis, Université de la Méditerranée (June 2002)Google Scholar
  16. 16.
    Mackie, I.: The Geometry of Implementation. PhD thesis, Department of Computing, Imperial College of Science, Technology and Medicine (September 1994)Google Scholar
  17. 17.
    Mackie, I.: YALE: Yet another lambda evaluator based on interaction nets. In: Proceedings of the 3rd International Conference on Functional Programming (ICFP 1998), pp. 117–128. ACM Press, New York (1998)CrossRefGoogle Scholar
  18. 18.
    Mackie, I.: Interaction nets for linear logic. Theoretical Computer Science 247(1), 83–140 (2000)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Mackie, I.: Efficient λ-evaluation with interaction nets. In: van Oostrom, V. (ed.) RTA 2004. LNCS, vol. 3091, pp. 155–169. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  20. 20.
    Mackie, I., Pinto, J.S.: Encoding linear logic with interaction combinators. Information and Computation 176(2), 153–186 (2002)MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Peyton Jones, S.L.: The Implementation of Functional Programming Languages. Prentice Hall International, Englewood Cliffs (1987)MATHGoogle Scholar
  22. 22.
    Pinto, J.S.: Parallel Implementation with Linear Logic. PhD thesis, École Polytechnique (February 2001)Google Scholar
  23. 23.
    Pinto, J.S.: Weak reduction and garbage collection in interaction nets. In: Proceedings of the 3rd International Workshop on Reduction Strategies in Rewriting and Programming, Valencia, Spain (2003)Google Scholar
  24. 24.
    Plasmeijer, R., Eekelen, M.: Functional Programming and Parallel Graph Rewriting. Addison-Wesley, Reading (1993)MATHGoogle Scholar
  25. 25.
    Sinot, F.-R.: Call-by-name and call-by-value as token-passing interaction nets. In: Urzyczyn, P. (ed.) TLCA 2005. LNCS, vol. 3461, pp. 386–400. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  26. 26.
    Sinot, F.-R.: Token-passing nets: Call-by-need for free. Electronic Notes in Theoretical Computer Science 135(5), 129–139 (2006)CrossRefGoogle Scholar
  27. 27.
    Wadsworth, C.P.: Semantics and Pragmatics of the Lambda-Calculus. PhD thesis, Oxford University (1971)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Ian Mackie
    • 1
    • 2
  1. 1.Department of Computer ScienceKing’s College LondonStrand, LondonUK
  2. 2.CNRS & École Polytechnique, LIX (UMR 7161)PalaiseauFrance

Personalised recommendations