Advertisement

Low-Cost Elliptic Curve Cryptography for Wireless Sensor Networks

  • Lejla Batina
  • Nele Mentens
  • Kazuo Sakiyama
  • Bart Preneel
  • Ingrid Verbauwhede
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4357)

Abstract

This work describes a low-cost Public-Key Cryptography (PKC) based solution for security services such as key-distribution and authentication as required for wireless sensor networks. We propose a custom hardware assisted approach to implement Elliptic Curve Cryptography (ECC) in order to obtain stronger cryptography as well as to minimize the power. Our compact and low-power ECC processor contains a Modular Arithmetic Logic Unit (MALU) for ECC field arithmetic. The best solution features 6718 gates for the MALU and control unit (data memory not included) in 0.13 μm CMOS technology over the field \({\mathbb{F}_{2^{131}}}\), which provides a reasonable level of security for the time being. In this case the consumed power is less than 30 μW when operating frequency is 500 kHz.

Keywords

sensor networks pervasive computing Elliptic Curve Cryptography authentication key-distribution hardware implementation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blake, I., Seroussi, G., Smart, N.P.: Elliptic Curves in Cryptography. London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge (1999)zbMATHGoogle Scholar
  2. 2.
    Gaubatz, G., Kaps, J.-P., Öztürk, E., Sunar, B.: State of the Art in Ultra-Low Power Public Key Cryptography for Wireless Sensor Networks. In: 2nd IEEE International Workshop on Pervasive Computing and Communication Security (PerSec 2005), Kauai Island, Hawaii (March 2005)Google Scholar
  3. 3.
    Gaubatz, G., Kaps, J.-P., Sunar, B.: Public Key Cryptography in Sensor Networks - Revisited. In: Castelluccia, C., Hartenstein, H., Paar, C., Westhoff, D. (eds.) ESAS 2004. LNCS, vol. 3313, pp. 2–18. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    IEEE P1363. Standard specifications for public key cryptography (1999)Google Scholar
  5. 5.
    Kumar, S., Paar, C.: Are standards compliant elliptic curve cryptosystems feasible on RFID? In: Proceedings of Workshop on RFID Security, Graz, Austria (July 2006)Google Scholar
  6. 6.
    Lenstra, A., Verheul, E.: Selecting cryptographic key sizes. In: Imai, H., Zheng, Y. (eds.) PKC 2000. LNCS, vol. 1751, pp. 446–465. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  7. 7.
    López, J., Dahab, R.: Fast multiplication on elliptic curves over GF(2m). In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 316–327. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  8. 8.
    Montgomery, P.: Speeding the Pollard and Elliptic Curve Methods of Factorization. Mathematics of Computation Vol. 48, 243–264 (1987)CrossRefGoogle Scholar
  9. 9.
    Schnorr, C.-P.: Efficient Identification and Signatures for Smart Cards. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, Heidelberg (1990)Google Scholar
  10. 10.
    Tuyls, P., Batina, L.: RFID-tags for Anti-Counterfeiting. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 115–131. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Wolkerstorfer, J.: Scaling ECC Hardware to a Minimum. In: ECRYPT workshop - Cryptographic Advances in Secure Hardware - CRASH 2005, September 6-7 (2005) (invited talk)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Lejla Batina
    • 1
  • Nele Mentens
    • 1
  • Kazuo Sakiyama
    • 1
  • Bart Preneel
    • 1
  • Ingrid Verbauwhede
    • 1
  1. 1.ESAT/COSICKatholieke Universiteit LeuvenLeuvenBelgium

Personalised recommendations