On the Wiretap Channel Induced by Noisy Tags

  • Julien Bringer
  • Hervé Chabanne
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4357)


At CARDIS’06, Castelluccia and Avoine introduce noisy tags to allow key exchange between an RFID tag and a reader. We here show that their protocol leads to a well-known information problem: the wiretap channel. We then make use of works by Thangaraj et al. on the case where the main channel is noiseless and where there are only erasures on the wiretapper’s channel to improve previous results on noisy tags. In particular, we show how one can achieve, in a practical manner, perfect secrecy for key exchange in this noisy tags context.


RFID wiretap channel noisy tags LDPC codes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bazzi, L., Richardson, T.J., Urbanke, R.L.: Exact thresholds and optimal codes for the binary-symmetric channel and gallager’s decoding algorithm A. IEEE Transactions on Information Theory 50(9), 2010–2021 (2004)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Castelluccia, C., Avoine, G.: Noisy tags: A pretty good key exchange protocol for RFID tags. In: Domingo-Ferrer, J., Posegga, J., Schreckling, D. (eds.) CARDIS 2006. LNCS, vol. 3928, pp. 289–299. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Gallager, R.G.: Low-Density Parity Check Codes. Research monograph series, vol. 21. MIT Press, Cambridge (1963)Google Scholar
  4. 4.
    Garfinkel, S.L., Juels, A., Pappu, R.: RFID Privacy: An Overview of Problems and Proposed Solutions. IEEE Security & Privacy 3(3), 34–43 (2005)CrossRefGoogle Scholar
  5. 5.
    Molnar, D., Wagner, D.: Privacy and security in library RFID: Issues, practices, and architectures. In: Pfitzmann, B., Liu, P. (eds.) Conference on Computer and Communications Security – ACM CCS, Washington, DC, USA, pp. 210–219. ACM Press, New York (2004)Google Scholar
  6. 6.
    Oren, Y., Shamir, A.: Power analysis of RFID tags (2006),
  7. 7.
    Ozarow, L.H., Wyner, A.D.: Wire–tap channel II. The Bell System Technical Journal 63(10), 2135–2157 (1984)zbMATHGoogle Scholar
  8. 8.
    Richardson, T.J., Urbanke, R.L.: Efficient encoding of low-density parity-check codes. IEEE Transactions on Information Theory 47(2), 638–656 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Smarandache, R., Vontobel, P.O.: On regular quasi-cyclic LDPC codes from binomials. In: Proceedings of IEEE International Symposium on Information Theory, Chicago, IL, USA, June 27–July 2, p. 274 (2004)Google Scholar
  10. 10.
    Thangaraj, A., Dihidar, S., Calderbank, A.R., McLaughlin, S.W., Merolla, J.-M.: On the application of LDPC codes to a novel wiretap channel inspired by quantum key distribution., Report cs.IT/0411003 (2004),
  11. 11.
    Wyner, A.D.: The wire–tap channel. The Bell System Technical Journal 54(8), 1355–1387 (1975)MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Julien Bringer
    • 1
  • Hervé Chabanne
    • 1
  1. 1.Sagem Défense Sécurité 

Personalised recommendations