Advertisement

A Modeling Approach Based on P Systems with Bounded Parallelism

  • Francesco Bernardini
  • Francisco J. Romero-Campero
  • Marian Gheorghe
  • Mario J. Pérez-Jiménez
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4361)

Abstract

This paper presents a general framework for modelling with membrane systems that is based on a computational paradigm where rules have associated a finite set of attributes and a corresponding function. Attributes and functions are meant to provide those extra features that allow to define different strategies to run a P system. Such a strategy relying on a bounded parallelism is presented using an operational approach and applying it for a case study presenting the basic model of quorum sensing for Vibrio fischeri bacteria.

Keywords

Quorum Sensing Membrane System Computational Paradigm Membrane Computing Parallel Step 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bernardini, F., Gheorghe, M.: Population P Systems. J. UCS 10(5), 509–539 (2004)MathSciNetGoogle Scholar
  2. 2.
    Bianco, L., Fontana, F., Manca, V.: P Systems with Reaction Maps. International Journal of Foundations of Computer Science 17(1), 27–48 (2006)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Calder, M., Vyshemirsky, V., Gilbert, D., Orton, R.: Analysis of Signalling Pathways using Continuous Time Markov Chains. Transactions on Computational Systems Biology (to appear, 2006)Google Scholar
  4. 4.
    Cardelli, L., Philips, A.: A Correct Abstract Machine for the Stochastic Pi-calculus. Electronical Notes in Theoretical Computer Science (to appear, 2004)Google Scholar
  5. 5.
    Andrei, O., Ciobanu, G., Lucanu, D.: Structural Operational Semantics of P Systems. In: Freund, R., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2005. LNCS, vol. 3850, pp. 31–48. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Collado-Vides, J.: Grammatical Models of the Regulation of Gene Expression. Proc. of National Academy of Science 89, 9405–9409 (1992)CrossRefGoogle Scholar
  7. 7.
    Dang, Z., Ibarra, O.H., Li, C., Gaoyan, X.: Decidability of Model-Checking P Systems. Journal of Automata, Languages and Combinatorics (to appear, 2006)Google Scholar
  8. 8.
    Dang, Z., Ibarra, O.H.: On One-membrane P systems Operating in Sequential Mode. Int. J. Found. Comput. Sci. 16(5), 867–881 (2005)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Duan, Z., Holcombe, M., Bell, A.: A Logic for Biological System. Biosystems 53, 93–155 (2000)CrossRefGoogle Scholar
  10. 10.
    Freund, R.: Asynchronous P Systems and P Systems Working in the Sequential Mode. In: Mauri, G., Păun, G., Jesús Pérez-Jímenez, M., Rozenberg, G., Salomaa, A. (eds.) WMC 2004. LNCS, vol. 3365, pp. 36–62. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Gillespie, D.T.: A General Method for Numerically Simulating the Stochastic Time Evolution of Coupled Chemical Reactions. J. Comput. Physics 22, 403–434 (1976)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Gillespie, D.T.: Exact Stochastic Simulation of Coupled Chemical Reactions. The Journal of Physical Chemistry 81(25), 2340–2361 (1977)CrossRefGoogle Scholar
  13. 13.
    Hardie, K.R., Williams, P., Winzer, K.: Bacterial cell-to-cell communication: sorry, can’t talk now, gone to lunch. Current Opinion in Microbiology 5, 216–222 (2002)CrossRefGoogle Scholar
  14. 14.
    Fargerströn, T., James, G., James, S., Kjelleberg, S., Nilsson, P.: Luminescence Control in the Marine Bacterium Vibrio fischeri: An Analysis of the Dynamics of lux Regulation. J. Mol. Biol. 296, 1127–1137 (2000)CrossRefGoogle Scholar
  15. 15.
    Kam, N., Cohen, I.R., Harel, D.: The Immune System as a Reactive Systems: Modelling T Cell Activation with Statecharts, The Weizmann Institute of Science, Israel (2001)Google Scholar
  16. 16.
    Matsuno, H., Doi, A., Nagasaki, M., Miyano, S., Hybrid: Petri Net Representation of Gene Regulatory Network. In: Pacific Symposium on Biocompting, pp. 338–349. World Scientific, Singapore (2000)Google Scholar
  17. 17.
    Meng, T.C., Somani, S., Dhar, P.: Modelling and Simulation of Biological Systems with Stochasticity. Silico Biology 4(0024), 137–158 (2004)Google Scholar
  18. 18.
    Nealson, K.H., Hastings, J.W.: Bacterial Bioluminescence: Its Control and Ecological Significance. Microbiology Review 43, 496–518 (1979)Google Scholar
  19. 19.
    Păun, G.: Computing with Membranes. Journal of Computer and System Sciences 61(1), 108–143 (2000)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Păun, G.: Membrane Computing. An Introduction. Springer, Berlin (2002)MATHGoogle Scholar
  21. 21.
    Jesús Pérez-Jímenez, M., Romero-Campero, F.J.: P Systems, a New Computational Modelling Tool for Systems Biology. In: Priami, C., Plotkin, G. (eds.) Transactions on Computational Systems Biology VI. LNCS (LNBI), vol. 4220, pp. 176–197. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  22. 22.
    Pescini, D., Besozzi, D., Mauri, G., Zandron, C.: Dynamical probabilistic P systems. International Journal of Foundations of Computer Science 17(1), 183–195 (2006)MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Priami, C., Regev, A., Shapiro, E., Silverman, W.: Application of a Stochastic Name-Passing Calculus to Representation and Simulation of Molecular Processes. Information Processing Letters 80, 25–31 (2001)MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Regev, A., Shapiro, E.: The π-calculus as an abstraction for biomolecular systems. In: Ciobanu, G., Rozenberg, G. (eds.) Modelling in Molecular Biology, pp. 219–266. Springer, Heidelberg (2004)Google Scholar
  25. 25.
    Segel, I.H.: Biochemical Calculations: How to Solve Mathematical Problems in General Biochemistry, 2nd edn. John Wiley and Sons, Chichester (1976)Google Scholar
  26. 26.
    Till, J.E., McCulloch, F., Siminovitch, L.: A Stochastic Model of Stem Cell Proliferation based on the Growth of Spleen Colony-Forming Cells. Proc. National Academy of Science USA 51, 117–128 (1964)Google Scholar
  27. 27.
    Walker, D., Holcombe, M., Southgate, J., McNeil, S., Smalwood, R.: The Epitheliome: Agent-Based Modelling of The Social Behaviour of Cells. Biosystems 76(1-3), 89–100 (2004)CrossRefGoogle Scholar
  28. 28.
    Waters, C.M., Bassler, B.L.: Quorum Sensing: Cell-to-Cell Communication in Bacteria. Annu. Rev. Cell. Dev. Biol. 21, 319–346 (2005)CrossRefGoogle Scholar
  29. 29.
  30. 30.
    Nottingham Quorum Sensing Web Site, http://www.nottingham.ac.uk/quorum/

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Francesco Bernardini
    • 1
  • Francisco J. Romero-Campero
    • 2
  • Marian Gheorghe
    • 3
  • Mario J. Pérez-Jiménez
    • 2
  1. 1.Leiden Institute of Advanced Computer ScienceUniversity of LeidenLeidenThe Netherlands
  2. 2.Research Group on Natural Computing, Department of Computer Science and Artificial IntelligenceUniversity of SevilleSevillaSpain
  3. 3.Department of Computer ScienceThe University of SheffieldSheffieldUK

Personalised recommendations