Computational Completeness of Tissue P Systems with Conditional Uniport

  • Sergey Verlan
  • Francesco Bernardini
  • Marian Gheorghe
  • Maurice Margenstern
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4361)


The paper introduces (purely communicative) tissue P systems with conditional uniport. Conditional uniport means that rules move only one object at a time, but this may be with the help of another one acting as an activator which is left untouched in the place where it is. Tissue P systems with conditional uniport are shown to be computationally complete in the sense that they can recognize all recursively enumerable sets of natural numbers. This is achieved by simulating deterministic register machines.


Communication Graph Time Symbol Register Machine Communication Rule Membrane Computing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P.: The Molecular Biology of the Cell, 4th edn. Garland Publ. Inc., London (2002)Google Scholar
  2. 2.
    Alhazov, A., Rogozhin, Y., Verlan, S.: Symport/Antiport Tissue P Systems with Minimal Cooperation. In: Proceedings of the ESF Exploratory Workshop on Cellular Computing (Complexity Aspects), Sevilla, Spain, pp. 37–52 (2005)Google Scholar
  3. 3.
    Bernardini, F., Gheorghe, M.: Cell Communication in Tissue P Systems: Universality Results. Soft Computing 9, 640–649 (2005)MATHCrossRefGoogle Scholar
  4. 4.
    Bernardini, F., Gheorghe, M., Krasnogor, N., Giavitto, J.-L.: On Self-assembly in Population P Systems. In: Calude, C.S., Dinneen, M.J., Păun, G., Pérez-Jímenez, M.J., Rozenberg, G. (eds.) UC 2005. LNCS, vol. 3699, pp. 46–57. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Csuhaj-Varjú, E., Vaszil, G.: P Automata or Purely Communicating Accepting P Systems. In: Păun, G., Rozenberg, G., Salomaa, A., Zandron, C. (eds.) WMC 2002. LNCS, vol. 2597, pp. 219–233. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Freund, R., Oswald, M.: P Systems with Activated/Prohibited Membrane Channels. In: Păun, G., Rozenberg, G., Salomaa, A., Zandron, C. (eds.) WMC 2002. LNCS, vol. 2597, pp. 261–269. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Gheorghe, M., Păun, G.: Computing by Self-Assembly: DNA Molecules, Polynominoes, Cells. In: Krasnogor, N., Gustafson, S., Pelta, D., Verdegay, J.L. (eds.) Systems Self-Assembly: Multidisciplinary Snapshots. Studies in Multidisciplinarity. Elsevier, Amsterdam (in press, 2006)Google Scholar
  8. 8.
    Goles, E., Margenstern, M.: Universality of the Chip-Firing Game. Theoretical Computer Science 172, 91–120 (1997)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Margenstern, M.: Two Railway Circuits: a Universal Circuit and an NP-difficult one. Computer Science Journal of Moldova 9, 3–33 (2001)MATHMathSciNetGoogle Scholar
  10. 10.
    Martín-Vide, C., Păun, G., Rozenberg, G.: Membrane Systems with Carriers. Theoretical Computer Science 270, 779–796 (2002)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Minsky, M.: Finite and Infinite Machines. Prentice-Hall, Englewood Cliffs (1967)MATHGoogle Scholar
  12. 12.
    Păun, A., Păun, G.: The Power of Communication: P Systems with Symport/Antiport. New Generation Computing 20, 295–305 (2002)MATHCrossRefGoogle Scholar
  13. 13.
    Păun, G.: Computing with Membranes. Journal of Computer and System Sciences 61, 108–143 (2000)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Păun, G.: Membrane Computing. An Introduction. Springer, Berlin (2002)MATHGoogle Scholar
  15. 15.
    Reisig, W.: Petri Nets. An Introduction. Springer, Berlin (1985)MATHGoogle Scholar
  16. 16.
    Alhazov, A., Freund, R., Rogozhin, Y.: Computational Power of Symport/Antiport: History, Advances, and Open Problems. In: Freund, R., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2005. LNCS, vol. 3850, pp. 1–30. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  17. 17.
    Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages, vol. 1-3. Springer, Heidelberg (1997)MATHGoogle Scholar
  18. 18.
    Toffoli, T., Margolus, N.: Cellular Automata Machines. The MIT Press, Cambridge (1987)Google Scholar
  19. 19.
    The P Systems Web Page:

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Sergey Verlan
    • 1
  • Francesco Bernardini
    • 2
  • Marian Gheorghe
    • 3
  • Maurice Margenstern
    • 4
  1. 1.LACL, Département InformatiqueUniversité Paris 12CrétielFrance
  2. 2.Leiden Institute of Advanced Computer ScienceUniversiteit LeidenLeidenThe Netherlands
  3. 3.Department of Computer ScienceThe University of SheffieldSheffieldUK
  4. 4.UFR MIM, LITAUniversité Paul Verlaine -MetzMetz CédexFrance

Personalised recommendations