Towards Probabilistic Model Checking on P Systems Using PRISM

  • Francisco J. Romero-Campero
  • Marian Gheorghe
  • Luca Bianco
  • Dario Pescini
  • Mario J. Pérez-Jiménez
  • Rodica Ceterchi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4361)


This paper presents the use of P systems and π-calculus to model interacting molecular entities and how they are translated into a probabilistic and symbolic model checker called PRISM.


Model Check Quorum Sensing Continuous Time Markov Chain Discrete Time Markov Chain Computation Tree Logic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alur, R., Henzinger, T.A.: Reactive Modules. Formal Methods in System Design 15, 7–48 (1999)CrossRefGoogle Scholar
  2. 2.
    Andrei, O., Ciobanu, G., Lucanu, D.: Executable Specifications of P Systems. In: Mauri, G., Păun, G., Jesús Pérez-Jímenez, M., Rozenberg, G., Salomaa, A. (eds.) WMC 2004. LNCS, vol. 3365, pp. 126–145. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Bernardini, F., Manca, V.: P Systems with Boundary Rules. In: Păun, G., Rozenberg, G., Salomaa, A., Zandron, C. (eds.) WMC 2002. LNCS, vol. 2597, pp. 107–118. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  4. 4.
    Bernardini, F., Gheorghe, M.: Population P Systems. J. UCS 10(5), 509–539 (2004)MathSciNetGoogle Scholar
  5. 5.
    Bianco, L., Fontana, F., Manca, V.: P Systems with Reaction Maps. International Journal of Foundations of Computer Science 17(1), 27–48 (2006)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Calder, M., Vyshemirsky, V., Gilbert, D., Orton, R.: Analysis of Signalling Pathways using Continuous Time Markov Chains. Transactions on Computational Systems Biology (to appear)Google Scholar
  7. 7.
    Dang, Z., Ibarra, O.H.: On One-Membrane P systems Operating in Sequential Mode. Int. J. Found. Comput. Sci. 16(5), 867–881 (2005)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Fontana, F., Bianco, L., Manca, V.: P Systems and the Modeling of Biochemical Oscillations. In: Freund, R., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2005. LNCS, vol. 3850, pp. 199–208. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Gillespie, D.T.: A General Method for Numerically Simulating the Stochastic Time Evolution of Coupled Chemical Reactions. J. Comput Physics 22, 403–434 (1976)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Gillespie, D.T.: Exact Stochastic Simulation of Coupled Chemical Reactions. The Journal of Physical Chemistry 81(25), 2340–2361 (1977)CrossRefGoogle Scholar
  11. 11.
    Goss, P.J.E., Peccoud, J.: Quantitative modeling of stochastic systems in molecular biology using stochastic Petri nets. Proc. Natl. Acad. Sci. USA 95, 6750–6755 (1998)CrossRefGoogle Scholar
  12. 12.
    Krasnogor, N., Gheorghe, M., Terrazas, G., Diggle, S., Williams, P., Camara, M.: An appealling Computational Mechanism Drawn from Bacterial Quorum Sensing. Bulletin of the EATCS 85, 135–148 (2005)MATHMathSciNetGoogle Scholar
  13. 13.
    Lecca, P., Corrado, P.: Cell Cycle Control in Eukaryotes: A BioSpi Model. Electronic Notes in Theoretical Computer Science (to appear)Google Scholar
  14. 14.
    Novak, B., Csikasz-Nagy, A., Gyorffy, B., Nasmyth, K., Tyson, J.J.: Model Scenarios for Evolution of the Eukaryotic Cell Cycle. Phil. Trans. R. Soc. Lond. 353, 2063–2076 (1998)CrossRefGoogle Scholar
  15. 15.
    Păun, G.: Computing with Membranes. Journal of Computer and System Sciences 61(1), 108–143 (2000)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Pérez-Jiménez, M.J., Romero-Campero, F.J.: Modelling Gene Expression Control Using P Systems: The Lac Operon, A Case Study (submitted)Google Scholar
  17. 17.
    Pérez-Jiménez, M.J., Romero-Campero, F.J.: P Systems, a New Computational Modelling Tool for Systems Biology. In: Priami, C., Plotkin, G. (eds.) Transactions on Computational Systems Biology VI. LNCS (LNBI), vol. 4220, pp. 176–197. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  18. 18.
    Pérez-Jiménez, M.J., Romero-Campero, F.J.: A Model of the Quorum Sensing System in Vibrio Fischeri Using P Systems (submitted)Google Scholar
  19. 19.
    Pescini, D., Besozzi, D., Mauri, G., Zandron, C.: Dynamical Probabilistic P Systems. International Journal of Foundations of Computer Science 17(1), 183–195 (2006)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Regev, A., Shapiro, E.: The π-Calculus as an Abstraction for Biomolecular Systems. In: Ciobanu, G., Rozenberg, G. (eds.) Modelling in Molecular Biology. Springer, Berlin (2004)Google Scholar
  21. 21.
    Terrazas, G., Krasnogor, N., Gheorghe, M., Bernardini, F., Diggle, S., Cámara, M.: An Environment Aware P-System Model of Quorum Sensing. In: Cooper, S.B., Löwe, B., Torenvliet, L. (eds.) CiE 2005. LNCS, vol. 3526, pp. 479–485. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  22. 22.
  23. 23.
    The P Systems Web Site:
  24. 24.
    SciLab Web Site:
  25. 25.

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Francisco J. Romero-Campero
    • 1
  • Marian Gheorghe
    • 2
  • Luca Bianco
    • 3
  • Dario Pescini
    • 4
  • Mario J. Pérez-Jiménez
    • 1
  • Rodica Ceterchi
    • 5
  1. 1.Research Group on Natural Computing, Department of Computer Science and Artificial IntelligenceUniversity of SevilleSevillaSpain
  2. 2.Department of Computer ScienceThe University of SheffieldSheffieldUK
  3. 3.Department of Computer ScienceUniversity of VeronaVeronaItaly
  4. 4.Dipartimento di Informatica, Sistemistica e ComunicazioneUniversità degli Studi di Milano-BicoccaMilanoItaly
  5. 5.Faculty of Mathematics and Computer ScienceUniversity of BucharestBucharestRomania

Personalised recommendations