Quorum Sensing: A Cell-Cell Signalling Mechanism Used to Coordinate Behavioral Changes in Bacterial Populations

  • Miguel Cámara
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4361)


One of the most important mechanisms for bacterial cell-to-cell communication and behavior coordination under changing environments is often referred to as “quorum sensing” (QS). QS relies on the activation of a sensor kinase or response regulator protein by, in many cases, a diffusible, low molecular weight signal molecule (a “pheromone” or “autoinducer”) (Cámara et al., 2002). Consequently, in QS, the concentration of the signal molecule reflects the number of bacterial cells in a particular niche and perception of a threshold concentration of that signal molecule indicates that the population is “quorated”, i.e. ready to make a behavioral decision. Bacteria cell-to-cell communication is perhaps the most important tool in the battle for survival; they employ communication to trigger transcriptional regulation resulting in sexual exchange and niche protection in some cases, to battle host’ defences and coordinate population migration. Ultimately, bacteria cell-to-cell communication is used to effect phenotypic change. The importance of coordinated gene-expression (and hence phenotypic change) in bacteria can be understood if one realizes that only by pooling together the activity of a quorum of cells can a bacterium be successful. It is increasingly apparent that, in nature, bacteria function less as individuals and more as coherent groups that are able to inhabit multiple ecological niches (Lazdunski et al., 2004). Within quorum sensing process several key elements must be considered: (i) the gene(s) involved in signal synthesis, (ii) the gene(s) involved in signal transduction, and (iii) the QS signal molecule(s).


Pseudomonas Aeruginosa Quorum Sense Quorum Sense System Pseudomonas Quinolone Signal Quorum Sense Signal Molecule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cámara, M., Williams, P., Hardman, A.: Controlling infection by tuning in and turning down the volume of bacterial small-talk. Lancet Infectious Diseases 2, 667–676 (2002)CrossRefGoogle Scholar
  2. 2.
    Diggle, S.P., Winzer, K., Lazdunski, A., Williams, P., Cámara, M.: Advancing the quorum in Pseudomonas aeruginosa: MvaT and the regulation of N-acylhomoserine lactone production and virulence gene expression. Journal of Bacteriology 184, 2576–2586 (2002)CrossRefGoogle Scholar
  3. 3.
    Eberhard, A., Burlingame, A.L., Eberhard, C., Kenyon, G.L., Nealson, K.H., Oppenheimer, N.J.: Structural identification of autoinducer of Photobacterium-Fischeri luciferase. Biochemistry 20, 2444–2449 (1981)CrossRefGoogle Scholar
  4. 4.
    Gambello, M.J., Iglewski, B.H.: Cloning and characterization of the Pseudomonas aeruginosa LasR gene, a transcriptional activator of elastase expression. Journal of Bacteriology 173, 3000–3009 (1991)Google Scholar
  5. 5.
    Latifi, A., Foglino, M., Tanaka, K., Williams, P., Lazdunski, A.: A hierarchical quorum sensing cascade in Pseudomonas aeruginosa links the transcriptional activators LasR and RhIR (VsmR) to expression of the stationary-phase sigma factor RpoS. Molecular Microbiology 21, 1137–1146 (1996)CrossRefGoogle Scholar
  6. 6.
    Latifi, A., Winson, M.K., Foglino, M., Bycroft, B.W., Stewart, G., Lazdunski, A., Williams, P.: Multiple homologs of LuxR and Luxl control expression of virulence determinants and secondary metabolites through quorum sensing in Pseudomonas aeruginosa PAO1. Molecular Microbiology 17, 333–343 (1995)CrossRefGoogle Scholar
  7. 7.
    Lazdunski, A.M., Ventre, I., Sturgis, J.N.: Regulatory circuits and communication in gram-negative bacteria. Nature Reviews Microbiology 2, 581–592 (2004)CrossRefGoogle Scholar
  8. 8.
    McKnight, S.L., Iglewski, B.H., Pesci, E.C.: The Pseudomonas quinolone signal regulates rhl quorum sensing in Pseudomonas aeruginosa. Journal of Bacteriology 182, 2702–2708 (2000)CrossRefGoogle Scholar
  9. 9.
    Ochsner, U.A., Reiser, J.: Autoinducer-mediated regulation of rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa. Proceedings of the National Academy of Sciences of the United States of America 92, 6424–6428 (1995)CrossRefGoogle Scholar
  10. 10.
    Passador, L., Cook, J.M., Gambello, M.J., Rust, L., Iglewski, B.H.: Expression of Pseudomonas aeruginosa virulence genes requires cell-to-cell communication. Science 260, 1127–1130 (1993)CrossRefGoogle Scholar
  11. 11.
    Pearson, J.P.: Early activation of quorum sensing. Journal of Bacteriology 184, 2569–2571 (2002)CrossRefGoogle Scholar
  12. 12.
    Pearson, J.P., Gray, K.M., Passador, L., Tucker, K.D., Eberhard, A., Iglewski, B.H., Greenberg, E.P.: Structure of the autoinducer required for expression of Pseudomonas aeruginosa virulence genes. Proceedings of the National Academy of Sciences of the United States of America 91, 197–201 (1994)CrossRefGoogle Scholar
  13. 13.
    Pesci, E.C., Milbank, J.B.J., Pearson, J.P., McKnight, S., Kende, A.S., Greenberg, E.P., Iglewski, B.H.: Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa. Proceedings of the National Academy of Sciences of the United States of America 96, 11229–11234 (1999)CrossRefGoogle Scholar
  14. 14.
    Pesci, E.C., Pearson, J.P., Seed, P.C., Iglewski, B.H.: Regulation of las and rhl quorum sensing in Pseudomonas aeruginosa. Journal of Bacteriology 179, 3127–3132 (1997)Google Scholar
  15. 15.
    Rahme, L.G., Stevens, E.J., Wolfort, S.F., Shao, J., Tompkins, R.G., Ausubel, F.M.: Common virulence factors for bacterial pathogenicity in plants and animals. Science 268, 1899–1902 (1995)CrossRefGoogle Scholar
  16. 16.
    Schuster, M., Lostroh, C.P., Ogi, T., Greenberg, E.P.: Identification, timing, and signal specificity of Pseudomonas aeruginosa quorum-controlled genes: a transcriptome analysis. Journal of Bacteriology 185, 2066–2079 (2003)CrossRefGoogle Scholar
  17. 17.
    Stover, C.K., Pham, X.Q., Erwin, A.L., Mizoguchi, S.D., Warrener, P., Hickey, M.J., Brinkman, F.S.L., Hufnagle, W.O., Kowalik, D.J., Lagrou, M., Garber, R.L., Goltry, L., Tolentino, E., Westbrock-Wadman, S., Yuan, Y., Brody, L.L., Coulter, S.N., Folger, K.R., Kas, A., Larbig, K., Lim, R., Smith, K., Spencer, D., Wong, G.K.S., Wu, Z., Paulsen, I.T., Reizer, J., Saier, M.H., Hancock, R.E.W., Lory, S., Olson, M.V.: Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406, 959–964 (2000)CrossRefGoogle Scholar
  18. 18.
    Whiteley, M., Lee, K.M., Greenberg, E.P.: Identification of genes controlled by quorum sensing in Pseudomonas aeruginosa. Proceedings of the National Academy of Sciences of the United States of America 96, 13904–13909 (1999)CrossRefGoogle Scholar
  19. 19.
    Williams, P., Bainton, N.J., Swift, S., Chhabra, S.R., Winson, M.K., Stewart, G., Salmond, G.P.C., Bycroft, B.W.: Small molecule-mediated density-dependent control of gene-expression in prokaryotes - Bioluminescence and the biosynthesis of carbapenem antibiotics. Fems Microbiology Letters 100, 161–167 (1992)CrossRefGoogle Scholar
  20. 20.
    Winson, M.K., Cámara, M., Latifi, A., Foglino, M., Chhabra, S.R., Daykin, M., Bally, M., Chapon, V., Salmond, G.P.C., Bycroft, B.W., Lazdunski, A., Stewart, G., Williams, P.: Multiple N-acyl-L-homoserine lactone signal molecules regulate production of virulence determinants and secondary metabolites in Pseudomonas aeruginosa. Proceedings of the National Academy of Sciences of the United States of America 92, 9427–9431 (1995)CrossRefGoogle Scholar
  21. 21.
    Winzer, K., Hardie, K.R., Williams, P.: Bacterial cell-to-cell communication: Sorry, can’t talk now - gone to lunch! Current Opinion in Microbiology 5, 216–222 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Miguel Cámara
    • 1
  1. 1.Institute of Infection, Immunity and Inflammation, Centre for Biomolecular SciencesUniversity of NottinghamNottinghamUK

Personalised recommendations