Advertisement

P Systems with Symport/Antiport and Time

  • Hitesh Nagda
  • Andrei Păun
  • Alfonso Rodríguez-Patón
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4361)

Abstract

We consider symport/antiport P systems using the time as the support for the output of a computation. We describe and study the properties of “timed symport/antiport systems”, showing that this new model of membrane systems based on time has more power/flexibility, and thus allows us to improve previous universality results. We were able to improve or match the best results concerning the symport/antiport systems which consider the output as originally defined as the number of molecules found in a pre-defined elementary membrane in the halting configuration of the system.

Keywords

Regular Language Output Register Elementary Membrane Register Machine Membrane Computing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alhazov, A., Freund, R., Rogozhin, Y.: Some Optimal Results on Symport/Antiport P Systems with Minimal Cooperation. In: Gutiérrez-Naranjo, M.A., et al. (eds.) Cellular Computing (Complexity Aspects), ESF PESC Exploratory Workshop, Fénix Editora, Sevilla, pp. 23–36 (2005)Google Scholar
  2. 2.
    Alhazov, A., Freund, R., Rogozhin, Y.: Computational Power of Symport/Antiport: History, Advances, and Open Problems. In: Freund, R., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2005. LNCS, vol. 3850, pp. 1–30. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Bernardini, F., Păun, A.: Universality of Minimal Symport/Antiport: Five Membranes Suffice. In: Martín-Vide, C., Mauri, G., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2003. LNCS, vol. 2933, pp. 43–54. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Cavaliere, M., Freund, R., Păun, G.: Event–Related Outputs of Computations in P Systems. In: Gutiérrez-Naranjo, M.A., et al. (eds.) Cellular Computing (Complexity Aspects), ESF PESC Exploratory Workshop, Fénix Editora, Sevilla, pp. 107–122 (2005)Google Scholar
  5. 5.
    Freund, R., Păun, A.: Membrane Systems with Symport/Antiport Rules: Universality Results. In: Păun, G., Rozenberg, G., Salomaa, A., Zandron, C. (eds.) WMC 2002. LNCS, vol. 2597, pp. 270–287. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Frisco, P., Hogeboom, J.H.: P systems with Symport/Antiport Simulating Counter Automata. Acta Informatica 41, 145–170 (2004)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Frisco, P., Ji, S.: Towards a Hierarchy of Conformons-P Systems. In: Păun, G., Rozenberg, G., Salomaa, A., Zandron, C. (eds.) WMC 2002. LNCS, vol. 2597, pp. 302–318. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  8. 8.
    Ibarra, O.H., Păun, A.: Counting Time in Computing with Cells. In: Proceedings of DNA11 conference, London Ontario, Canada, June 6-9, 14 pages (2005)Google Scholar
  9. 9.
    Ionescu, M., Păun, G., Yokomori, T.: Spiking Neural P Systems. Fundamenta Informaticae 71(2-3), 279–308 (2006)MATHMathSciNetGoogle Scholar
  10. 10.
    Minsky, M.L.: Recursive Unsolvability of Post’s Problem of “Tag” and Other Topics in Theory of Turing Machines. Annals of Mathematics 74, 437–455 (1961)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Păun, A., Păun, G.: The Power of Communication: P Systems with Symport/Antiport. New Generation Computing 20(3), 295–306 (2002)MATHCrossRefGoogle Scholar
  12. 12.
    Păun, G.: Further Twenty-six Open Problems in Membrane Computing. In: The Third Brainstorming Meeting on Membrane Computing, Sevilla, Spain (February 2005)Google Scholar
  13. 13.
    Păun, G., Pérez-Jiménez, M.J., Sancho-Caparrini, F.: On the Reachability Problem for P Systems with Symport/Antiport. In: Proc. Automata and Formal Languages Conf., Debrecen, Hungary (2002)Google Scholar
  14. 14.
    Păun, G., Pérez-Jiménez, M.J., Rozenberg, G.: Spike Trains in Spiking Neural P Systems. International Journal of Foundations of Computer Science (in press)Google Scholar
  15. 15.
    Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages, vol. 3. Springer, Berlin (1997)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Hitesh Nagda
    • 1
  • Andrei Păun
    • 1
    • 2
  • Alfonso Rodríguez-Patón
    • 2
  1. 1.Department of Computer Science/IfMLouisiana Tech UniversityRustonUSA
  2. 2.Facultad de InformáticaUniversidad Politécnica de Madrid – UPMMadridSpain

Personalised recommendations