Infinite Hierarchies of Conformon-P Systems

  • Pierluigi Frisco
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4361)


Two models of conformon-P systems, one restricted in the number of input conformons and the other restricted in the number of input membranes, are proved to induce infinite hierarchies.

The described systems do not work under the requirement of maximal parallelism and perform deterministic simulations of restricted counter machines.


Turing Machine Separator Module Interaction Rule Register Machine Deterministic Simulation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baker, B.S., Book, R.V.: Reversal-bounded multipushdown machines. Journal of Computer and System Science 8, 315–332 (1974)MATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Bollobás, B.: Extremal graph theory. Academic Press, London (1978)MATHGoogle Scholar
  3. 3.
    Chartrand, G., Lesniak, L.: Graphs and Digraphs. Chapman and Hall/CRC (2005)Google Scholar
  4. 4.
    Freund, R.: Special variants of P systems inducing an infinite hierarchy with respect to the number of membranes. Bulletin of EATCS 75, 209–219 (2001)MATHMathSciNetGoogle Scholar
  5. 5.
    Frisco, P.: The conformon-P system: A molecular and cell biology-inspired computability model. Theoretical Computer Science 312(2-3), 295–319 (2004)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Frisco, P.: P systems, petri nets, and program machines. In: Freund, R., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2005. LNCS, vol. 3850, pp. 209–223. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Frisco, P., Gibson, R.T.: A simulator and an evolution program for conformon-P systems. In: SYNASC 2005, 7th International Symposium on Simbolic and Numeric Algorithms for Scientific Computing, pp. 427–430. IEEE Computer Society Press, Los Alamitos (2005); Workshop on Theory and Applications of P Systems, TAPS, Timisoara (Romania), September 26-27, (2005)Google Scholar
  8. 8.
    Frisco, P., Ji, S.: Conformons-P systems. In: Hagiya, M., Ohuchi, A. (eds.) DNA 2002. LNCS, vol. 2568, pp. 291–301. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Frisco, P., Ji, S.: Towards a hierarchy of info-energy P systems. In: Păun, G., Rozenberg, G., Salomaa, A., Zandron, C. (eds.) WMC 2002. LNCS, vol. 2597, pp. 302–318. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  10. 10.
    Green, D.E., Ji, S.: The electromechanical model of mitochondrial structure and function. In: Schultz, J., Cameron, B.F. (eds) Molecular Basis of Electron Transport, pp. 1–44 (1972)Google Scholar
  11. 11.
    Greibach, S.A.: Remarks on blind and partially blind one-way multicounter machines. Theoretical Computer Science 7, 311–324 (1978)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Hoogeboom, H.J.: Carriers and counters. P-systems with carriers vs. (blind) counter automata. In: Goos, G., Hartmanis, J., van Leeuwen, J. (eds.) Developments in language theory, 6th International conference, DLT 2002, Kyoto, Japan, September (2002); Revised papers, Ito, M., Toyama, M. (eds.) LNCS, vol. 2450, pp. 140–151 (2003)Google Scholar
  13. 13.
    Hopcroft, J.E., Ullman, D.: Introduction to Automata Theory, Languages, and Computation. Addison-Wesley, Reading (1979)MATHGoogle Scholar
  14. 14.
    Ibarra, O.H.: On membrane hierarchy in P systems. Theoretical Computer Science 334, 115–129 (2005)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Ibarra, O.H., Păun, G.: Characterizations of context-sensitive languages and other languages classes in terms of symport/antiport P systems. Theoretical Computer Science (in press, 2006)Google Scholar
  16. 16.
    Ibarra, O.H., Woodworth, S.: On bounded symport/Antiport P systems. In: Carbone, A., Pierce, N.A. (eds.) DNA 2005. LNCS, vol. 3892, pp. 25–36. Springer, Heidelberg (2006)Google Scholar
  17. 17.
    Ji, S.: The Bhopalator: a molecular model of the living cell based on the concepts of conformons and dissipative structures. Journal of Theoretical Biology 116, 395–426 (1985)CrossRefGoogle Scholar
  18. 18.
    Ji, S.: The Bhopalator: an information/energy dual model of the living cell (II). Fundamenta Informaticae 49(1-3), 147–165 (2002)MATHGoogle Scholar
  19. 19.
    Jones, J.P., Matijasevič, Y.V.: Register machine proof of the theorem on exponential Diophantine representation of enumerable sets. Journal of Symbolic Logic 49(3), 818–829 (1984)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Krishna, S.: Languages of P systems: computability and complexity. PhD thesis, Indian instituto of technology Madras, India (2001)Google Scholar
  21. 21.
    Minsky, M.L.: Recursive unsolvability of Post’s problem of “tag” and other topics in theory of Turing machines. Annals of Mathematics 74(3), 437–455 (1961)CrossRefMathSciNetGoogle Scholar
  22. 22.
    Minsky, M.L.: Computation: Finite and Infinite Machines. In: Automatic computation. Prentice-Hall, Englewood Cliffs (1967)Google Scholar
  23. 23.
    Păun, G.: Computing with membranes. Journal of Computer and System Sciences 1(61), 108–143 (2000)CrossRefGoogle Scholar
  24. 24.
    Păun, G.: Membrane Computing. An Introduction. Springer, Heidelberg (2002)MATHGoogle Scholar
  25. 25.
    Reisig, W., Rozenberg, G. (eds.): APN 1998. LNCS, vol. 1491. Springer, Heidelberg (1998)MATHGoogle Scholar
  26. 26.
    Volkenstein, M.V.: The conformon. Journal of Theoretical Biology 34, 193–195 (1972)CrossRefGoogle Scholar
  27. 27.
    Zandron, C.: P-systems web page:

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Pierluigi Frisco
    • 1
  1. 1.School of Mathematical and Computer SciencesHeriot-Watt UniversityEdinburghUK

Personalised recommendations