Advertisement

P Finite Automata and Regular Languages over Countably Infinite Alphabets

  • Jürgen Dassow
  • György Vaszil
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4361)

Abstract

We examine the class of languages over countably infinite alphabets characterized by a class of restricted and simplified P automata variants, which we call P finite automata, and show that these classes possess several properties which make them perfect candidates for being the natural extension of the notion of finite automata and that of regular languages to infinite alphabets. To this aim, we also show that P finite automata are equivalent to a restricted variant of register machines, providing a more conventional automata theoretical characterization of the same infinite alphabet language class.

Keywords

Equality Check Regular Language Finite Automaton Input Symbol Input Alphabet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cheng, E.H.Y., Kaminski, M.: Context-free Languages over Infinite Alphabets. Acta Informatica 35, 245–267 (1998)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Csuhaj-Varjú, E., Vaszil, G.: P Automata. In: Păun, G., Rozenberg, G., Salomaa, A., Zandron, C. (eds.) WMC 2002. LNCS, vol. 2597, pp. 219–233. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  3. 3.
    Kaminski, M., Francez, N.: Finite-Memory Automata. Theoretical Computer Science 134, 329–363 (1994)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Martín-Vide, C., Păun, A., Păun, G.: On the Power of P Systems with Symport Rules. Journal of Universal Computer Science 8(2), 317–331 (2002)MathSciNetGoogle Scholar
  5. 5.
    Otto, F.: Classes of Regular and Context-free Languages over Countably Infinite Alphabets. Discrete Applied Mathematics 12, 41–56 (1985)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Păun, A., Păun, G.: The Power of Communication: P Systems with Symport/Antiport. New Generation Computing 20(3), 295–306 (2002)MATHCrossRefGoogle Scholar
  7. 7.
    Păun, G.: Membrane Computing: An Introduction. Springer, Berlin (2002)MATHGoogle Scholar
  8. 8.
    Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages, vol. 1-3. Springer, Berlin (1997)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Jürgen Dassow
    • 1
  • György Vaszil
    • 2
  1. 1.Fakultät für InformatikOtto-von-Guericke-Universität MagdeburgMagdeburgGermany
  2. 2.Computer and Automation Research InstituteHungarian Academy of SciencesBudapestHungary

Personalised recommendations