Advertisement

P Colonies with a Bounded Number of Cells and Programs

  • Erzsébet Csuhaj-Varjú
  • Maurice Margenstern
  • György Vaszil
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4361)

Abstract

We continue the investigation of P colonies, a class of abstract computing devices composed of very simple agents (computational tools), acting and evolving in a shared environment. We show that if P colonies are initialized by placing a number of copies of a certain object in the environment, then they can generate any recursively enumerable set of numbers with a bounded number of cells, each cell containing a bounded number of programs (of bounded length), for constant bounds.

Keywords

Turing Machine Bounded Number Register Machine Membrane Computing Internal Object 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Csuhaj-Varjú, E., Dassow, J., Kelemen, J., Păun, G.: Grammar Systems – A Grammatical Approach to Distribution and Cooperation. Gordon and Breach, London (1994)MATHGoogle Scholar
  2. 2.
    Csuhaj-Varjú, E., Kelemen, J., Kelemenová, A., Păun, G., Vaszil, G.: Computing with cells in environment: P colonies. Journal of Multiple Valued Logic and Soft Computing (to appear)Google Scholar
  3. 3.
    Kelemen, J., Kelemenová, A.: A grammar-theoretic treatment of multi-agent systems. Cybernetics and Systems 23, 621–633 (1992)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Kelemen, J., Kelemenová, A., Păun, G.: Preview of P colonies: A biochemically inspired computing model. In: Bedau, M., et al. (eds.) Workshop and Tutorial Proceedings. Ninth International Conference on the Simulation and Synthesis of Living Systems (Alife IX), Boston, Mass, pp. 82–86 (2004)Google Scholar
  5. 5.
    Korec, I.: Small universal register machines. Theoretical Computer Science 168, 267–301 (1996)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Minsky, M.: Computation – Finite and Infinite Machines. Prentice Hall, Englewood Cliffs (1967)MATHGoogle Scholar
  7. 7.
    Păun, G.: Membrane Computing – An Introduction. Springer, Berlin (2002)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Erzsébet Csuhaj-Varjú
    • 1
    • 2
  • Maurice Margenstern
    • 3
  • György Vaszil
    • 1
  1. 1.Computer and Automation Research InstituteHungarian Academy of SciencesBudapestHungary
  2. 2.Department of Algorithms and Their ApplicationsLoránd Eötvös UniversityBudapestHungary
  3. 3.LITAUniversité Paul Verlaine – MetzMetz Cedex 1France

Personalised recommendations