Advertisement

Tau Leaping Stochastic Simulation Method in P Systems

  • Paolo Cazzaniga
  • Dario Pescini
  • Daniela Besozzi
  • Giancarlo Mauri
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4361)

Abstract

Stochastic simulations based on the τ leaping method are applicable to well stirred chemical systems reacting within a single fixed volume. In this paper we propose a novel method, based on the τ leaping procedure, for the simulation of complex systems composed by several communicating regions. The new method is here applied to dynamical probabilistic P systems, which are characterized by several features suitable to the purpose of performing stochastic simulations distributed in many regions. Conclusive remarks and ideas for future research are finally presented.

Keywords

Stochastic Simulation Stochastic Simulation Algorithm Poisson Random Variable Critical Reaction Histogram Plot 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arkin, A., Ross, J., McAdams, H.H.: Stochastic kinetic analysis of developmental pathway bifurcation in phage lambda-infected Escherichia coli cells. Genetics 149, 1633–1648 (1998)Google Scholar
  2. 2.
    Besozzi, D., Cazzaniga, P., Pescini, D., Mauri, G.: Modelling metapopulations with stochastic membrane systems (submitted)Google Scholar
  3. 3.
    Blake, W.J., Kærn, M., Cantor, C.R., Collins, J.J.: Noise in eukaryotic gene expression. Nature 422, 633–637 (2003)CrossRefGoogle Scholar
  4. 4.
    Cao, Y., Gillespie, D.T., Petzold, L.R.: Avoiding negative populations in explicit Poisson tau-leaping. Journ. Chem. Phys. 123, 054104 (2005)Google Scholar
  5. 5.
    Cao, Y., Gillespie, D.T., Petzold, L.R.: Efficient step size selection for the tau-leaping simulation method. Journ. Chem. Phys. 124, 044109 (2006)Google Scholar
  6. 6.
    Cazzaniga, P., Pescini, D., Romero-Campero, F.J., Besozzi, D., Mauri, G.: Stochastic approaches in P systems for simulating biological systems. In: Gutiérrez-Naranjo, M.A., Păun, G., Riscos-Núnez, A., Romero-Campero, F.J. (eds.) Proceedings of the Fourth Brainstorming Week on Membrane Computing, RGNC REPORT 02/2006, Fénix Editora, pp. 145–164 (2006)Google Scholar
  7. 7.
    Chatterjee, A., Vlachos, D.G., Katsoulakis, M.A.: Binomial distribution based tau-leap accelerated stochastic simulation. Journ. Chem. Phys. 122, 024112, (2005)Google Scholar
  8. 8.
    Ciobanu, G., Păun, G., Pérez-Jiménez, M.J. (eds.): Applications of Membrane Computing. Springer, Berlin (2005)Google Scholar
  9. 9.
    Fedoroff, N., Fontana, W.: Small numbers of big molecules. Science 297, 1129–1131 (2002)CrossRefGoogle Scholar
  10. 10.
    Garcia-Ojalvo, J., Elowitz, M.B., Strogatz, S.H.: Modeling a synthetic multicellular clock: Repressilators coupled by quorum sensing. PNAS 101, 10955–10960 (2004)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Gibbons, M., Bruck, J.: Chemical systems with many species and many channels. Journ. Phys. Chem. 104, 1876–1889 (2000)CrossRefGoogle Scholar
  12. 12.
    Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. Journ. Phys. Chem. 81, 2340–2361 (1977)CrossRefGoogle Scholar
  13. 13.
    Gillespie, D.T., Petzold, L.R.: Approximate accelerated stochastic simulation of chemically reacting systems. Journ. Chem. Phys. 115, 1716–1733 (2001)CrossRefGoogle Scholar
  14. 14.
    Gillespie, D.T., Petzold, L.R.: Improved leap-size selection for accelerated stochastic simulation. Journ. Chem. Phys. 119, 8229–8234 (2003)CrossRefGoogle Scholar
  15. 15.
    Martegani, E., Tisi, R., Belotti, F., Colombo, S., Paiardi, C., Winderickx, J., Cazzaniga, P., Besozzi, D., Mauri, G.: Identification of an intracellular signalling complex for RAS/cAMP pathway in yeast: experimntal evidences and modelling. In: International Specialised Symposium on Yeasts, Hanasaari - Espoo, Finland (June 18-21, 2006)Google Scholar
  16. 16.
    Martegani, E., Cazzaniga, P., Besozzi, D., Colombo, S., Mauri, G.: Stochastic modeling of the Ras/cAMP signal transduction pathway in yeast. In: Computational Methods in Systems Biology, Trento, Italy (October 18-19, 2006)Google Scholar
  17. 17.
    Meng, T.C., Somani, S., Dhar, P.: Modeling and simulation of biological systems with stochasticity. In: Silico Biology, vol. 4, 0024 (2004)Google Scholar
  18. 18.
    Morton-Firth, C.J.: Stochastic simulation of cell signaling pathways. PhD thesis, University of Cambridge, Cambridge, UK (1998)Google Scholar
  19. 19.
    Müller, D., Exler, S., Aguilera-Vázquez, L., Guerrero-Martín, E., Reuss, M.: Cyclic AMP mediates the cell cycle dynamics of energy metabolism in Saccharomyces cerevisiae. Yeast 20, 351–367 (2003)CrossRefGoogle Scholar
  20. 20.
    Păun, G.: Computing with membranes. J. Comput. Syst. Sci. 61, 108–143 (2000)MATHCrossRefGoogle Scholar
  21. 21.
    Păun, G.: Membrane Computing. An Introduction. Springer, Berlin (2002)MATHGoogle Scholar
  22. 22.
    Pescini, D., Besozzi, D., Mauri, G.: Investigating local evolutions in dynamical probabilistic P systems. In: Proceedings of Seventh International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC 2005), pp. 440–447. IEEE Computer Press, Los Alamitos (2005)Google Scholar
  23. 23.
    Pescini, D., Besozzi, D., Zandron, C., Mauri, G.: Analysis and simulation of dynamics in probabilistic P systems. In: Carbone, A., Pierce, N.A. (eds.) DNA 2005. LNCS, vol. 3892, pp. 236–247. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  24. 24.
    Pescini, D., Besozzi, D., Mauri, G., Zandron, C.: Dynamical probabilistic P systems. International Journal of Foundations of Computer Science 17, 183–204 (2006)MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Tian, T., Burrage, K.: Binomial leap methods for simulating stochastic chemical kinetics. Journ. Chem. Phys. 121, 10356–10364 (2004)CrossRefGoogle Scholar
  26. 26.
    Turner, T.E., Schnell, S., Burrage, K.: Stochastic approaches for modelling in vivo reactions. Computational Biology and Chemistry 28, 165–178 (2004)MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Paolo Cazzaniga
    • 1
  • Dario Pescini
    • 1
  • Daniela Besozzi
    • 2
  • Giancarlo Mauri
    • 1
  1. 1.Dipartimento di Informatica, Sistemistica e ComunicazioneUniversità degli Studi di Milano-BicoccaMilanoItaly
  2. 2.Dipartimento di Informatica e ComunicazioneUniversità degli Studi di MilanoMilanoItaly

Personalised recommendations