Classifying States of a Finite Markov Chain with Membrane Computing

  • Mónica Cardona
  • M. Angels Colomer
  • Mario J. Pérez-Jiménez
  • Alba Zaragoza
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4361)


In this paper we present a method to classify the states of a finite Markov chain through membrane computing. A specific P system with external output is designed for each boolean matrix associated with a finite Markov chain. The computation of the system allows us to decide the convergence of the process because it determines in the environment the classification of the states (recurrent, absorbent, and transient) as well as the periods of states. The amount of resources required in the construction is polynomial in the number of states of the Markov chain.


Markov Chain Equivalence Class Turing Machine Priority Relation Boolean Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cardona, M., Colomer, M.A., Miró, J., Zaragoza, A.: A step towards DNA computation model (submitted, 2006)Google Scholar
  2. 2.
    Cardona, M., Colomer, M.A., Jesús Pérez-Jímenez, M., Zaragoza, A.: Handling Markov Chains with Membrane Computing. In: Calude, C.S., Dinneen, M.J., Păun, G., Rozenberg, G., Stepney, S. (eds.) UC 2006. LNCS, vol. 4135, pp. 72–85. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Häggström, O.: Finite Markov Chains and Algorithmic Applications. London Mathematical Society. Cambridge University Press, Cambridge (2003)Google Scholar
  4. 4.
    Nelson, R.: Probability, Stochastic Processes, and Queueing Theory: The Mathematics of Computer Performance Modeling. Springer, New York (1995)MATHGoogle Scholar
  5. 5.
    Shiryayev, A.N.: Probability. In: GTM 1995. Springer, Heidelberg (1984)Google Scholar
  6. 6.
    Păun, G.: Computing with membranes. Journal of Computer and System Sciences 61(1), 108–143 (2000); Turku Center for Computer Science-TUCS Report Nr. 208 (1998)Google Scholar
  7. 7.
    Păun, G.: Membrane Computing. An Introduction. Springer, Berlin (2002)MATHGoogle Scholar
  8. 8.
    Păun, G., Rozenberg, G.: A guide to membrane computing. Theoretical Computer Science 287, 73–100 (2002)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Mónica Cardona
    • 1
  • M. Angels Colomer
    • 1
  • Mario J. Pérez-Jiménez
    • 2
  • Alba Zaragoza
    • 1
  1. 1.Department of MathematicsUniversity of LleidaLleidaSpain
  2. 2.Research Group on Natural Computing, Department of Computer Science and Artificial IntelligenceUniversity of SevillaSevillaSpain

Personalised recommendations