Advertisement

Biological Roots and Applications of P Systems: Further Suggestions

  • Ioan I. Ardelean
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4361)

Abstract

P systems offer the possibility to appropriately describe discrete processes performed by: i) single objects: catalytic molecules (= enzymes), supramolecular structures (MscL, porins, ionic channels etc.), single cells, and ii) a small number of objects occurring in the sample, e.g., several mechanosensitive channels occurring within a membrane patch. Thus P systems could offer the possibility to capture and model the plethora of experimental data obtained in the emerging and rapidly growing field of single cell or single molecule or atom studies.

Furthermore, it is suggested that in vitro implementation of P systems could be done by the use of artificial membranes, a step forward computations with artificial membranes.

Keywords

Discrete Process Terminal Oxidase Magnetotactic Bacterium Integral Calculus Bacterial Chemotaxis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., Watson, J.D.: Molecular Biology of the Cell, 3rd edn. Garland Publishing, New York (1994)Google Scholar
  2. 2.
    Alle, H., Geiger, J.R.P.: Combined analogue and actin potential coding in hippocampus mossy fibres. Science 311, 1290–1293 (2006)CrossRefGoogle Scholar
  3. 3.
    Ardelean, I.I.: The relevance of biomembranes for P systems – general aspects. Fundamenta Informaticae 49(1-3), 35–43 (2002)MATHMathSciNetGoogle Scholar
  4. 4.
    Ardelean, I.I.: Molecular biology of bacteria and its relevance for P systems. In: Păun, G., Rozenberg, G., Salomaa, A., Zandron, C. (eds.) WMC 2002. LNCS, vol. 2597, pp. 1–18. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  5. 5.
    Ardelean, I.I., Besozzi, D., Garzon, M.H., Mauri, G., Roy, S.: P system models for mechanosensitive channels. In: Ciobanu, G., Păun, G., Pérez-Jiménez, M.J. (eds.) Applications of Membrane Computing, pp. 43–81. Springer, Berlin (2006)Google Scholar
  6. 6.
    Ardelean, I.I., Besozzi, D., Manara, C.: Aerobic respirations a bio-logic circuit containing molecular logic gates. In: Mauri, G., Păun, G., Jesús Pérez-Jímenez, M., Rozenberg, G., Salomaa, A., Zandron, C. (eds.) WMC 2004. LNCS, vol. 3365, pp. 119–125. Springer, Heidelberg (2005)Google Scholar
  7. 7.
    Ardelean, I.I., Cavaliere, M.: Modelling biological processes by using probabilistic P system software. Natural Computing 2, 173–197 (2003)MATHCrossRefGoogle Scholar
  8. 8.
    Armitage, J.P.: Bacterial tactic responses. Adv. Microb. Physiol. 41, 229–289 (1999)CrossRefGoogle Scholar
  9. 9.
    Baker, M.D., Peter, M., Wolanin, P.M., Stock, J.B.: Systems biology of bacterial chemotaxis. Current Opinion in Microbiology 9, 1–6 (2006)CrossRefGoogle Scholar
  10. 10.
    Besozzi, D., Rozenberg, G.: Extended P systems for the analysis of (trans)membrane protein populations. In: Hoogeboom, H.J., Păun, G., Rozenberg, G. (eds.) Pre-Proceedings of 7th Workshop on Membrane Computing, Leiden Center, July 17-21, pp. 8–10 (2006)Google Scholar
  11. 11.
    Bianco, L., Fontana, F., Franco, G., Manca, V.: P systems for biological dynamics. In: Ciobanu, G., Păun, G., Pérez-Jiménez, M.J. (eds.) Applications of Membrane Computing, pp. 81–126. Springer, Berlin (2006)Google Scholar
  12. 12.
    Bianco, L., Fontana, F.: Towards a hybrid metabolic algorithm. In: Hoogeboom, H.J., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2006. LNCS, vol. 4361, pp. 183–196. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Blakemore, R.P.: Magnetotactic bacteria. Science 190, 377–379 (1975)CrossRefGoogle Scholar
  14. 14.
    Bray, D.: Protein molecules as computational elements in living cells. Nature 376, 307–312 (1995)CrossRefGoogle Scholar
  15. 15.
    Bray, D.: Bacterial chemotaxis and the question of gain. PNAS 99, 7–9 (2002)Google Scholar
  16. 16.
    Brehm-Stecher, B.F., Johnson, E.A.: Single-cell microbiology: tools, technologies, and applications. Microbiol. Mol. Biol. Rev. 68, 538–559 (2004)CrossRefGoogle Scholar
  17. 17.
    Carr, C.E., Konishi, M.: Axonal delay lines for time measurement in the owl’s brainstem. Proc. Natl. Acad. Sci. 85, 8311–8315 (1988)CrossRefGoogle Scholar
  18. 18.
    Cavaliere, M.: Evolution-communication P systems. In: Păun, G., Rozenberg, G., Salomaa, A., Zandron, C. (eds.) WMC 2002. LNCS, vol. 2597, pp. 134–145. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  19. 19.
    Cavaliere, M., Ardelean, I.I.: Modelling respiration in bacteria and respiration/photosynthesis interaction in cyanobacteria. In: Ciobanu, G., Păun, G., Pérez-Jiménez, M.J. (eds.) Applications of Membrane Computing, pp. 129–159. Springer, Berlin (2006)Google Scholar
  20. 20.
    Chen, H., Freund, R., Ionescu, M., Păun, G., Pérez-Jiménez, M.J.: On string languages generated by spiking neural P systems. In: RGNC Raport 02/2006, Fenix Editora, Sevillia, pp. 169–195 (2006)Google Scholar
  21. 21.
    Chen, H., Ionescu, M., Ishdorj, T.-O.: On the efficiency of spiking neural P systems. In: RGNC Raport 02/2006, Fenix Editora, Sevillia, pp. 195–207 (2006)Google Scholar
  22. 22.
    Chen, H., Ionescu, M., Păun, A., Păun, G., Popa, B.: On trace languages generated by spiking neural P systems. In: RGNC Raport 02/2006, Fenix Editora, Sevillia, pp. 207–225 (2006)Google Scholar
  23. 23.
    Chen, H., Ishdorj, T.-O., Păun, G.: Computing along the axon. In: RGNC Raport 02/2006, Fenix Editora, Sevillia, pp. 225–241 (2006)Google Scholar
  24. 24.
    Chen, H., Ishdorj, T.-O., Păun, G., Pérez-Jiménez, M.J.: Spiking neural P systems with extended rules. In: RGNC Raport 02/2006, Fenix Editora, Sevillia, pp. 241–267 (2006)Google Scholar
  25. 25.
    Ciobanu, G., Pérez-Jiménez, M., Păun, G. (eds.): Applications of Membrane Computing. Springer, Berlin (2006)Google Scholar
  26. 26.
    Ciures, A., Mărgineanu, D.: Thermodynamics in biology: an intruder? J. Theor. Biol. 28(1), 147–150 (1970)CrossRefGoogle Scholar
  27. 27.
    Garzon, M.H., Drumwright, E., Deaton, R.J., Renault, D.: Virtual test tubes: A new methodology for computing. In: Proc. 7th Int. Symposium on String Processing and Information Retrieval, A Corunna, Spain, pp. 116–121. IEEE Computer Society Press, Los Alamitos (2000)CrossRefGoogle Scholar
  28. 28.
    Glandsdorff, P., Prigogine, I.: Thermodynamics of Structure, Stability and Fluctuations. Wiley-Interscience, New York (1971)Google Scholar
  29. 29.
    Hartwell, L.H., Hopfield, J.L., Leibler, S., Murray, A.W.: From molecular to modular cell biology. Nature 402, C47–C52 (1999)Google Scholar
  30. 30.
    Ibarra, O.H., Păun, A., Păun, G., Rodriguez-Paton, A., Sosik, P., Woodworth, S.: Normal forms for spiking neural P systems. In: RGNC Raport 03/2006, Fenix Editora, Sevillia, pp. 105–137 (2006)Google Scholar
  31. 31.
    Ionescu, M., Păun, G., Yokomori, T.: Spiking neural P systems. Fundamenta Informaticae 71(2-3), 279–308 (2006)MATHMathSciNetGoogle Scholar
  32. 32.
    Jung, H.: Towards the molecular mechanism of Na/solute symport in prokaryotes. Biochem. Biophys. Acta. 1505, 131–143 (2001)CrossRefGoogle Scholar
  33. 33.
    Kitano, H.: Systems biology – A brief overview. Science 295, 1662–1664 (2002)CrossRefGoogle Scholar
  34. 34.
    Manca, V.: MP systems approaches to biochemical dynamics: Biological rhythms and oscillations. In: Hoogeboom, H.J., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2006. LNCS, vol. 4361, pp. 40–53. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  35. 35.
    Manca, V.: Topics and problems in metabolic P systems. In: RGNC Raport 03/2006, Fenix Editora, Sevillia, pp. 173–184 (2006)Google Scholar
  36. 36.
    Martinez-Antonio, A., Chandra, J.S., Salgado, H., Collado-Vides, J.: Internal-sensing machinery directs the activity of the regulatory network in Escherichia coli. Trends in Microbiology 1, 22–27 (2006)CrossRefGoogle Scholar
  37. 37.
    Mayer, E.: This is Biology. The Belknap Press of Harvard University Press (1998)Google Scholar
  38. 38.
    Mărgineanu, D.G.: From metaphor to mechanism in membrane biophysics. Rev. Quest. Scient. 172, 277–292 (2001)Google Scholar
  39. 39.
    Morowitza, H.J.: Entropy for Biologists. An Introduction to Thermodynamics. Academic Press, New York (1972)Google Scholar
  40. 40.
    Moya, S.E., Toca-Herrera, J.L.: From hollow shells to artificial cells: biointerface engineering on polyelectrolyte capsules. J. Nanosci. Nanotechnol. 6, 1–9 (2006)CrossRefGoogle Scholar
  41. 41.
    Noireaux, V., Libchaber, A.: A vesicle bioreactor as a step toward an artificial cell assembly. PNAS 101, 17669–17674 (2004)CrossRefGoogle Scholar
  42. 42.
    Ottova, A., Tien, H.T.: The 40th anniversary of bilayer lipid membrane research. Bioelectrochemistry 56, 171–173 (2002)CrossRefGoogle Scholar
  43. 43.
    Padan, E., Venturi, M., Gercham, Y., Dover, N.: Na/H antiporters. Biochem. Biophys. Acta. 1505, 144–157 (2001)CrossRefGoogle Scholar
  44. 44.
    Palsson, B.: The challenges of in silico biology. Nature Biotechnology 18, 1147–1150 (2000)CrossRefGoogle Scholar
  45. 45.
    Păun, A., Păun, G.: Small universal spiking neural P systems. In: RGNC Raport 03/2006, Fenix Editora, Sevillia, pp. 213–235 (2006)Google Scholar
  46. 46.
    Păun, Gh: Computing with membranes. Journal of Computer and Systems Sciences 61, 108–143 (2000)MATHCrossRefGoogle Scholar
  47. 47.
    Păun, Gh: From cells to computers using membrane (P systems). BioSystems 59, 139–158 (2001)CrossRefGoogle Scholar
  48. 48.
    Păun, G.: Membrane Computing. An Introduction. Springer, Berlin (2002)MATHGoogle Scholar
  49. 49.
    Pérez-Jiménez, M.J.: P systems based modelling of cellular signalling pathways. In: Hoogeboom, H.J., Păun, G, Rozenberg, G. (eds.) Pre-Proc. of Workshop on Membrane Computing, Lorentz Center, Leiden, July 17-21, pp. 54–74 (2006)Google Scholar
  50. 50.
    Pérez-Jiménez, M.J., Romero-Campero, F.J.: A study of the robustness of the EGFR signalling cascade using continuous membrane systems. In: Dale, R., Wong, K.-F., Su, J., Kwong, O.Y. (eds.) IJCNLP 2005. LNCS, vol. 3651, pp. 268–278. Springer, Heidelberg (2005)Google Scholar
  51. 51.
    Saier, M.H.: Genome archaeology leading to the characterization and classification of transport proteins. Curr. Op. Microbiol. 2, 555–561 (1999)CrossRefGoogle Scholar
  52. 52.
    Segev, I., Schneidman, E.: Axons as computing devices: Basic insights gained from models. J. Physiol. 93, 263–270 (1999)Google Scholar
  53. 53.
    Shi, J., Dertouzos, J., Gafni, A., Steel, D., Palfey, B.A.: Single-molecule kinetics reveals signatures of half-sites reactivity in dihydrorotate dehydrogenase A catalysis. PNAS 103, 5775–5780 (2006)CrossRefGoogle Scholar
  54. 54.
    Szurmant, H., Ordal, G.W.: Diversity in chemotaxis mechanisms among the bacteria and Archaea. Microbiol. Mol. Biol. Rev. 68, 301–319 (2004)CrossRefGoogle Scholar
  55. 55.
    Turing, A.M.: The chemical basis of morphogenesis. Phil. Trans. R. Soc. London B, 237, 37–72 (1952)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Ioan I. Ardelean
    • 1
  1. 1.Institute of BiologyRomanian Academy, Centre of MicrobiologyBucharestRomania

Personalised recommendations