A Hybrid Browsing Mechanism Using Conceptual Scales

  • Mihye Kim
  • Paul Compton
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4303)


A Web-based document management and retrieval system has been developed aimed at small communities in specialized domains and based on free annotation of documents by users. In the proposed approach, the main search mechanism is based on browsing a concept lattice of Formal Concept Analysis (FCA) formulated with a set of keywords with which users annotated the documents. In this paper, we extend our search mechanism by combining the lattice-based browsing structure with conceptual scales of FCA for ontological domain attributes. Our experience with a prototype suggests that conceptual scaling helps users not only to get more specific search results, but also to search relevant documents by the interrelationship between the keywords of documents and ontological attributes.


Conceptual scaling Browsing mechanism Formal concept analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Benjamins, V.R., Fensel, D., Decker, S., Perez, A.G.: (KA)2: Building Ontologies for the Internet: a Mid-term Report. International journal of human computer studies 51(3), 687–712 (1999)CrossRefGoogle Scholar
  2. 2.
    Carpineto, C., Romano, G.: Information retrieval through hybrid navigation of lattice representations. International Journal of Human-Computer Studies 45, 553–578 (1996)CrossRefGoogle Scholar
  3. 3.
    Cimiano, P., Hotho, A., Stumme, G., Tane, J.: Conceptual Knowledge Processing with Formal Concept Analysis and Ontologies. In: Eklund, P.W. (ed.) ICFCA 2004. LNCS (LNAI), vol. 2961, pp. 189–207. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Cole, R., Eklund, P.: Browsing Semi-structured Web texts using Formal Concept Analysis, Conceptual Structures: Broadening the Base. In: Proceedings of the 9th International Conference on Conceptual Structures (ICCS 2001), pp. 290–303. Springer, Heidelberg (2001)Google Scholar
  5. 5.
    Cole, R., Stumme, G.: CEM - A Conceptual Email Manager, Conceptual Structures: Logical, Linguistic, and Computational Issues. In: Proceedings of the 8th International Conference on Conceptual Structures (ICCS 2000), pp. 438–452. Springer, Heidelberg (2000)Google Scholar
  6. 6.
    Davies, J., Duke, A., Sure, Y.: OntoShare – A Knowledge Environment for Virtual Communities of Practice. In: Proceedings of the Second International Conference on Knowledge Capture (K-CAP 2003), pp. 20–27. ACM, New York (2003)CrossRefGoogle Scholar
  7. 7.
    Eklund, P., Groh, B., Stumme, G., Wille, R.: A Contextual-Logic Extension of TOSCANA, Conceptual Structures: Logical, Linguistic, and Computational Issues. In: Proceedings of the 8th International Conference on Conceptual Structures (ICCS 2000), Darmstadt, pp. 453–467. Springer, Heidelberg (2000)Google Scholar
  8. 8.
    Ganter, B., Wille, R.: Conceptual Scaling. In: Roberts, F. (ed.) Application of Combinatorics and Graph Theory to the Biological and Social Sciences, pp. 139–167. Springer, Heidelberg (1989)Google Scholar
  9. 9.
    Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer, Heidelberg (1999)zbMATHGoogle Scholar
  10. 10.
    Godin, R., Missaoui, R., April, A.: Experimental comparison of navigation in a Galois lattice with conventional information retrieval methods. International Journal of Man-Machine Studies 38, 747–767 (1993)CrossRefGoogle Scholar
  11. 11.
    Groh, G., Strahringer, S., Wille, R.: TOSCANA-Systems Based on Thesauri, Conceptual Structures: Theory, Tools and Applications. In: Proceedings of the 6th International Conference on Conceptual Structures (ICCS 1998), pp. 127–138. Springer, Heidelberg (1998)Google Scholar
  12. 12.
    Handschuh, S., Staab, S.: CREAM – CREAting Methadata for the Semantic Web. Computer Networks 242, 579–598 (2003)CrossRefGoogle Scholar
  13. 13.
    Kim, M., Compton, P.: Evolutionary Document Management and Retrieval for Specialised Domains on the Web. International journal of human computer studies 60(2), 201–241 (2004)CrossRefGoogle Scholar
  14. 14.
    Priss, U.: Lattice-based Information Retrieval. Knowledge Organisation 27(3), 132–142 (2000)Google Scholar
  15. 15.
    Quan, T.T., Hui, S.C., Fong, A.C.M., Cao, T.H.: Automatic Generation of Ontology for Scholarly Semantic Web. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 726–740. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  16. 16.
    Stumme, G.: Hierarchies of Conceptual Scales. In: 12th Banff Knowledge Acquisition, Modelling and Management (KAW 1999), Banff, Canada, pp. 5.5.1-18. . SRDG Publication, University of Calgary (1999)Google Scholar
  17. 17.
    Wille, R.: Restructuring lattice theory: an approach based on hierarchies of concepts. In: Rival, I. (ed.) Ordered sets, pp. 445–470. Reidel, Dordrecht (1982)Google Scholar
  18. 18.
    Wille, R.: Concept lattices and conceptual knowledge systems. Computers and Mathematics with Applications 23, 493–515 (1992)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Mihye Kim
    • 1
  • Paul Compton
    • 2
  1. 1.Department of Computer Science EducationCatholic University of DaeguSouth Korea
  2. 2.School of Computer Science and EngineeringUniversity of New South WalesSydneyAustralia

Personalised recommendations