Skip to main content

Applying Gaussian Distribution-Dependent Criteria to Decision Trees for High-Dimensional Microarray Data

  • Conference paper
  • 519 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 4316))

Abstract

Biological data presents unique problems for data analysis due to its high dimensions. Microarray data is one example of such data which has received much attention in recent years. Machine learning algorithms such as support vector machines (SVM) are ideal for microarray data due to its high classification accuracies. However, sometimes the information being sought is a list of genes which best separates the classes, and not a classification rate.

Decision trees are one alternative which do not perform as well as SVMs, but their output is easily understood by non-specialists. A major obstacle with applying current decision tree implementations for high-dimensional data sets is their tendency to assign the same scores for multiple attributes. In this paper, we propose two distribution-dependant criteria for decision trees to improve their usefulness for microarray classification.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Quinlan, J.R.: Improved use of continuous attributes in C4.5. Journal of Artificial Intelligence Research 4, 77–90 (1996), Source available from: http://www.rulequest.com/Personal/

    MATH  Google Scholar 

  2. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Francisco (1993)

    Google Scholar 

  3. Witten, I.H., Frank, E.: Data Mining: Practical machine learning tools and techniques with Java implementations, 2nd edn. Morgan Kaufmann Publishers, San Francisco (2005)

    Google Scholar 

  4. Luo, R.C., Scherp, R.S., Lanzo, M.: Object identification using automated decision tree construction approach for robotics applications. Journal of Robotic Systems 4(3), 423–433 (1987)

    Article  Google Scholar 

  5. Shang, N., Breiman, L.: Distribution based trees are more accurate. In: Proc. International Conference on Neural Information Processing, pp. 133–138 (1996)

    Google Scholar 

  6. Loh, W.Y., Shih, Y.S.: Split selection methods for classification trees. Statistica Sinica 7, 815–840 (1997)

    MATH  MathSciNet  Google Scholar 

  7. Alon, U., et al.: Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc. National Academy of Sciences USA 96(12), 6745–6750 (1999), Data: http://microarray.princeton.edu/oncology/affydata/index.html

    Article  Google Scholar 

  8. Yeung, K.Y., Bumgarner, R.E., Raftery, A.E.: Bayesian model averaging: development of an improved multi-class, gene selection and classification tool for microarray data. Bioinformatics 21(10), 2394–2402 (2005)

    Article  Google Scholar 

  9. Wit, E., McClure, J.: Statistics for Microarrays. John Wiley & Sons Ltd, Chichester (2004)

    Book  MATH  Google Scholar 

  10. Giles, P.J., Kipling, D.: Normality of oligonucleotide microarray data and implications for parametric statistical analysis. Bioinformatics 19(17), 2254–2262 (2003)

    Article  Google Scholar 

  11. Zhang, H., Yu, C.Y., Singer, B., Xiong, M.: Recursive partitioning for tumor classification with gene expression microarray data. Proc. National Academy of Sciences USA 98(12), 6730–6735 (2001)

    Article  Google Scholar 

  12. Zhang, H., Yu, C.Y., Singer, B.: Cell and tumor classification using gene expression data: Construction of forests. Proc. National Academy of Sciences USA 100(7), 4168–4172 (2003)

    Article  Google Scholar 

  13. Su, Y., Murali, T.M., Pavlovic, V., Schaffer, M., Kasif, S.: RankGene: identification of diagnostic genes based on expression data. Bioinformatics 19(12), 1578–1579 (2003), Software available from: http://genomics10.bu.edu/yangsu/rankgene/

    Article  Google Scholar 

  14. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in C: The Art of Scientific Computing, 2nd edn. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  15. Kullback, S., Leibler, R.A.: On information and sufficiency. Annals of Mathematical Statistics 22(1), 79–86 (1951)

    Article  MATH  MathSciNet  Google Scholar 

  16. Jeffreys, H.: An invariant form for the prior probability in estimation problems. Proc. Royal Society of London (A) 186, 453–461 (1946)

    Article  MATH  MathSciNet  Google Scholar 

  17. Golub, T.R., et al.: Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring. Science 286(5439), 531–537 (1999), Data: http://www.broad.mit.edu/cgi-bin/cancer/datasets.cgi

    Article  Google Scholar 

  18. Gordon, G.J., et al.: Translation of microarray data into clinically relevant cancer diagnostic tests using gene expression ratios in lung cancer and mesothelioma. Cancer Research 62(17), 4963–4967 (2002), Data: http://www.chestsurg.org/publications/2002-microarray.aspx

    Google Scholar 

  19. Pomeroy, S.L., et al.: Prediction of central nervous system embryonal tumour outcome based on gene expresion. Nature 415(6870), 436–442 (2002), Data: http://www.broad.mit.edu/cgi-bin/cancer/datasets.cgi

    Article  Google Scholar 

  20. Ramaswamy, S., et al.: Multiclass cancer diagnosis using tumor gene expression signatures. Proc. National Academy of Sciences USA 98(26), 15149–15154 (2001), Data: http://www.broad.mit.edu/cgi-bin/cancer/datasets.cgi

    Article  Google Scholar 

  21. Shipp, M.A., et al.: Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning. Nature Medicine 8(1), 68–74 (2002), Data: http://www.broad.mit.edu/cgi-bin/cancer/datasets.cgi

    Article  Google Scholar 

  22. Singh, D., et al.: Gene expression correlates of clinical prostate cancer behavior. Cancer Cell 1(2), 203–209 (2002), Data: http://www.broad.mit.edu/cgi-bin/cancer/datasets.cgi

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wan, R., Takigawa, I., Mamitsuka, H. (2006). Applying Gaussian Distribution-Dependent Criteria to Decision Trees for High-Dimensional Microarray Data. In: Dalkilic, M.M., Kim, S., Yang, J. (eds) Data Mining and Bioinformatics. VDMB 2006. Lecture Notes in Computer Science(), vol 4316. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11960669_5

Download citation

  • DOI: https://doi.org/10.1007/11960669_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-68970-6

  • Online ISBN: 978-3-540-68971-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics