Advertisement

Reducing the Spread of Damage of Key Exposures in Key-Insulated Encryption

  • Thi Lan Anh Phan
  • Yumiko Hanaoka
  • Goichiro Hanaoka
  • Kanta Matsuura
  • Hideki Imai
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4341)

Abstract

A proposal for key exposure resilient cryptography called, key-insulated public key encryption (KIPE), has been proposed by Dodis, Katz, Xu, and Yung [6] in which the secret key is changed over time so that the exposure of current key minimizes the damage overall. We take this idea further toward betterment by introducing new schemes with improved helper key security: in our schemes, we introduce an auxiliary helper key to update the secret key less frequently than the main helper key (and only one of these keys is used at each key updates,) as a result, this gives added protection to the system, by occasional auxiliary key updates, reducing the spread of further harm that may be caused by key exposure when compared to the original KIPE. Our proposed schemes are proven to be semantically secure in the random oracle model.

Keywords

Smart Card Random Oracle Main Helper Random Oracle Model Query Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anderson, R.: Two remarks on public key cryptology. Invited Lecture, ACM CCCS 1997 (1997), available at: http://www.cl.cam.ac.uk/users/rja14/
  2. 2.
    Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  3. 3.
    Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. SIAM J. of Computing 32(3), 586–615 (2003) (full version of [2])MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Bellare, M., Palacio, A.: Protecting against key exposure: strongly key-insulated encryption with optimal threshold, available at: http://eprint.iacr.org/2002/064/
  5. 5.
    Canetti, R., Halevi, S., Katz, J.: A forward secure public key encryption scheme. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 255–271. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Dodis, Y., Katz, J., Xu, S., Yung, M.: Key-insulated public key cryptosystems. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 65–82. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  7. 7.
    Dodis, Y., Franklin, M., Katz, J., Miyaji, A., Yung, M.: Intrusion-resilient public-key encryption. In: Joye, M. (ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 19–32. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  8. 8.
    Dodis, Y., Franklin, M., Katz, J., Miyaji, A., Yung, M.: A generic construction for intrusion-resilient public-key encryption. In: Okamoto, T. (ed.) CT-RSA 2004. LNCS, vol. 2964, pp. 81–98. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    Fujisaki, E., Okamoto, T.: How to enhance the security of public-key encryption at minimum cost. In: Imai, H., Zheng, Y. (eds.) PKC 1999. LNCS, vol. 1560, pp. 53–68. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  10. 10.
    Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryption schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 537–554. Springer, Heidelberg (1999)Google Scholar
  11. 11.
    Hanaoka, G., Hanaoka, Y., Imai, H.: Parallel key-insulated public key encryption. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T.G. (eds.) PKC 2006. LNCS, vol. 3958, pp. 105–122. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Hanaoka, Y., Hanaoka, G., Shikata, J., Imai, H.: Identity-based hierarchical strongly key-insulated encryption and its application. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T.G. (eds.) PKC 2006. LNCS, vol. 3958, pp. 495–514. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Okamoto, T., Pointcheval, D.: The gap-problems: a new class of problems for the security of cryptographic schemes. In: Kim, K.-c. (ed.) PKC 2001. LNCS, vol. 1992, pp. 104–118. Springer, Heidelberg (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Thi Lan Anh Phan
    • 1
  • Yumiko Hanaoka
    • 2
  • Goichiro Hanaoka
    • 3
  • Kanta Matsuura
    • 1
  • Hideki Imai
    • 3
  1. 1.The University of TokyoJapan
  2. 2.NTT DoCoMo, Inc. 
  3. 3.National Institute of Advanced Industrial Science and TechnologyJapan

Personalised recommendations