Advertisement

Industry and Object Recognition: Applications, Applied Research and Challenges

  • Yutaka Hirano
  • Christophe Garcia
  • Rahul Sukthankar
  • Anthony Hoogs
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4170)

Abstract

Object recognition technology has matured to a point at which exciting applications are becoming possible. Indeed, industry has created a variety of computer vision products and services from the traditional area of machine inspection to more recent applications such as video surveillance, or face recognition. In this chapter, several representatives from industry present their views on the use of computer vision in industry. Current research conducted in industry is summarized and prospects for future applications and developments in industry are discussed.

Keywords

Computer Vision Face Recognition Object Recognition Object Detection Query Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    The NIST humanid evaluation framework (2003), http://www.frvt.org
  2. 2.
    The TREC video retrieval evaluation (2003), http://www-nlpir.nist.gov/projects/trecvid
  3. 3.
    The Pascal visual object classes challenge (2005), http://www.pascal-network.org/challenges/VOC
  4. 4.
    Chan, M., Hoogs, A., Schmiederer, J., Petersen, M.: Detecting rare events in video using semantic primitives with HMM. In: Proc. ICPR, vol. 4, pp. 150–154 (2004)Google Scholar
  5. 5.
    Chan, M., Hoogs, A., Perera, A., Bhotika, R., Schmiederer, J., Doretto, G.: Joint recognition of complex events and track matching. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition (2006)Google Scholar
  6. 6.
    Fergus, R., Zisserman, A., Perona, P.: Object class recognition by unsupervised scale-invariant learning. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2003) (2003)Google Scholar
  7. 7.
    Garcia, C., Delakis, M.: Convolutional face finder: A neural architecture for fast and robust face detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 25, 1408–1423 (2004)CrossRefGoogle Scholar
  8. 8.
    Gavrila, D.M.: Pedestrian Detection from a Moving Vehicle. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1843, pp. 37–49. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  9. 9.
    Gheissari, N., Sebatian, T.B., Tu, P.H., Rittscher, J., Hartley, R.: A novel approach to person reidentification. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition (2006)Google Scholar
  10. 10.
    Gionis, A., Indyk, P., Motwani, R.: Similarity search in high dimensions via hashing. In: Proc.Conference on Very Large Databases (1999)Google Scholar
  11. 11.
    Johnson, A., Hebert, M.: Using spin images for efficient object recognition in cluttered 3D scenes. IEEE Transactions on Pattern Analysis and Machine Intelligence 21(5), 433–449 (1999)CrossRefGoogle Scholar
  12. 12.
    Hirano, Y., Kitahama, K., Yoshizawa, S.: Image-based Object Recognition and Dexterous Hand/Arm Motion Planning Using RRTs for Grasping in Cluttered Scene. In: IEEE/RSJ Conference on Intelligent Robots and Systems (IROS 2005), Edmonton, Canada (2005)Google Scholar
  13. 13.
    Hoiem, D., Sukthankar, R., Schneiderman, H., Huston, L.: Object-based image retrieval using the statistics of images. In: Proc.Computer Vision and Pattern Recognition (2004)Google Scholar
  14. 14.
    Hoogs, A., Collins, R., Kaucic, R., Mundy, J.: A common set of perceptual observables for grouping, figure-ground discrimination and texture classification. T. PAMI 25, 458–475 (2003)Google Scholar
  15. 15.
    Hoogs, A., Rittscher, J., Stein, G., Schmiederer, J.: Video content annotation using visual analysis and large semantic knowledgebase. In: Proc. CVPR. IEEE, Los Alamitos (2003)Google Scholar
  16. 16.
    Kaucic, R., Perera, A.G.A., Brooksby, G., Kaufhold, J., Hoogs, A.: A unified framework for tracking through occlusions and across sensor gaps. In: Proc. CVPR, pp. 990–997 (2005)Google Scholar
  17. 17.
    Kaucic, R.A., McCulloch, C.C., Mendonça, P.R.S., Walter, D.J., Avila, R.S., Mundy, J.L.: Model-based detection of lung nodules in CT exams. In: Lemke, H.U., Vannier, M.W., Inamura, K., Farman, A.G., Doi, K., Reiber, J.H.C. (eds.) Computer Assisted Radiology and Surgery, London, UK. International Congress Series, vol. 1256, pp. 990–997. Elsevier, Amsterdam (2003)Google Scholar
  18. 18.
    Kaufhold, J., Hoogs, A.: Learning to segment images using region-based perceptual features. In: Proceedings of the Conference on Computer Vision and Pattern Recognition. IEEE, Los Alamitos (2004)Google Scholar
  19. 19.
    Ke, Y., Sukthankar, R., Huston, L.: Efficient near-duplicate and sub-image retrieval. In: Proc. ACM Multimedia (2004)Google Scholar
  20. 20.
    Ke, Y., Sukthankar, R.: PCA-SIFT: A more distinctive representation for local image descriptors. In: Proc. Computer Vision and Pattern Recognition (2004)Google Scholar
  21. 21.
    Krahnstoever, N., Mendonca, P.: Bayesian autocalibration for surveillance. In: Proc. ICCV. IEEE, Los Alamitos (2005)Google Scholar
  22. 22.
    Krahnstoever, N., Kelliher, T., Rittscher, J.: Obtaining pareto optimal performance of visual surveillance algorithms. In: Proc. of IEEE International Workshop on Performance Evaluation of Tracking and Surveillance (2005)Google Scholar
  23. 23.
    Leibe, B., Seemann, E., Schiele, B.: Pedestrian detection in crowded scenes. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2005), San Diego, CA (2005)Google Scholar
  24. 24.
    Liu, X., Chen, T., Rittscher, J.: Optimal pose for face recognition. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition (2006)Google Scholar
  25. 25.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision (2004)Google Scholar
  26. 26.
    Shi, J., Malik, J.: Normalized Cuts and Image Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(8), 888–905 (2000)CrossRefGoogle Scholar
  27. 27.
    McCulloch, C.C., Kaucic, R.A., Mendonça, P.R.S., Walter, D.J., Avila, R.S.: Model-based detection of lung nodules in computed tomography exams. Academic Radiology 11, 258–266 (2004)CrossRefGoogle Scholar
  28. 28.
    Meng, Y., Chang, E., Li, B.: Enhancing DPF for near-replica image recognition. In: Proc. Computer Vision and Pattern Recognition (2003)Google Scholar
  29. 29.
    Perera, A., Srinivas, C., Hoogs, A., Brooksby, G., Hu, W.: Multi-object tracking through simultaneous long occlusions and split-merge conditions. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition (2006)Google Scholar
  30. 30.
    Rothganger, F., Lazebnik, S., Schmid, C., Ponce, J.: 3D Object Modeling and Recognition Using Affine-Invariant Patches and Multi-View Spatial Constraints. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2003), Madison, WI, vol. II, pp. 272–277 (June 2003)Google Scholar
  31. 31.
    Ren, X., Malik, J.: Learning a classification model for segmentation. In: Proc. IEEE International Conference on Computer Vision (2003)Google Scholar
  32. 32.
    Rittscher, J., Tu, P., Krahnstoever, N.: Simultaneous estimation of segmentation and shape. In: Proc. CVPR. IEEE, Los Alamitos (2005)Google Scholar
  33. 33.
    Rittscher, J., Blake, A., Hoogs, A., Stein, G.: Mathematical modeling of animate and intentional motion. Philosophical Transactions of the Royal Society of London: Biological Sciences 358, 475–490 (2003)CrossRefGoogle Scholar
  34. 34.
    Sanson, H.: Video indexing: Myth and reality. In: Fourth International Workshop on Content-Based Multimedia Indexing, Riga, Latvia (2005)Google Scholar
  35. 35.
    Snoek, C., Worring, M.: Multimodal video indexing: A review of the state-of-the-art. Multimedia Tools and Applications 25, 5–35 (2005)CrossRefGoogle Scholar
  36. 36.
    Stein, G., Rittscher, J., Hoogs, A.: Enabling video annotation using a semantic database extended with visual knowledge. In: Proceedings of the International Conference on Multimedia and Expo. IEEE, Los Alamitos (2003)Google Scholar
  37. 37.
    Tu, P., Mendonca, P.: Surface reconstruction via helmholtz reciprocity with a single image pair. In: Proc. CVPR (2003)Google Scholar
  38. 38.
    Tu, P., Rittscher, J., Kelliher, T.: Challenges to Fingerprints (2005)Google Scholar
  39. 39.
    Tu, P., Hartley, R.: Statistical significance as an aid to system performance evaluation. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1843, pp. 366–378. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  40. 40.
    Tu, P., Hartley, R., Allyassin, A., Lorensen, W., Gupta, R., Heier, L.: Face reconstructions using flesh deformation modes. In: International Association for Craniofacial Identification (2000)Google Scholar
  41. 41.
    Tu, P., Rittscher, J., Kelliher, T.: Site calibration for large indoor scenes. In: Proceedings of the IEEE Conference on Advanced Video and Signal Based Surveillance. IEEE, Los Alamitos (2003)Google Scholar
  42. 42.
    Varma, M., Zisserman, A.: Classifying images of materials: Achieving viewpoint and illumination independence. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2352, pp. 255–271. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  43. 43.
    Veltkamp, R.C., Tanase, M.: Content-based image retrieval systems: A survey. IEEE Image Processing 1, 100–148 (2001)Google Scholar
  44. 44.
    Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proceedings of IEEE Int. Conf. on Computer Vision and Patttern Recognition, Hawaii, US, pp. 511–518 (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Yutaka Hirano
    • 1
  • Christophe Garcia
    • 2
  • Rahul Sukthankar
    • 3
    • 4
  • Anthony Hoogs
    • 5
  1. 1.Future Projects DivisionToyota Motor CorporationMishukuJapan
  2. 2.France Telecom division R&DCesson Sevigne CedexFrance
  3. 3.Intel Research PittsburghPittsburghUSA
  4. 4.The Robotics InstituteCarnegie Mellon UniversityPittsburghUSA
  5. 5.GE Global Research, One Research CircleNiskayunaUSA

Personalised recommendations