Selectively Traceable Anonymity

  • Luis von Ahn
  • Andrew Bortz
  • Nicholas J. Hopper
  • Kevin O’Neill
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4258)


Anonymous communication can, by its very nature, facilitate socially unacceptable behavior; such abuse of anonymity is a serious impediment to its widespread deployment. This paper studies two notions related to the prevention of abuse. The first is selective traceability, the property that a message’s sender can be traced with the help of an explicitly stated set of parties. The second is noncoercibility, the property that no party can convince an adversary (using technical means) that he was not the sender of a message. We show that, in principal, almost any anonymity scheme can be made selectively traceable, and that a particular anonymity scheme can be modified to be noncoercible.


Random Oracle Protocol Message Shared Channel Anonymous Communication Group Signature Scheme 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    von Ahn, L., Bortz, A., Hopper, N.J.: k-anonymous message transmission. In: 10th Conference on Computer and Communications Security, pp. 122–130 (2003)Google Scholar
  2. 2.
    von Ahn, L., Bortz, A., Hopper, N.J., O’Neill, K.: Selectively Traceable Anonymity. Minnesota Digital Technology Center Research Report 2006/14 (June 2006), URL:
  3. 3.
    Ateniese, G., Camenisch, J., Joye, M., Tsudik, G.: A Practical and Provably Secure Coalition-Resistant Group Signature Scheme. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 255–270. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  4. 4.
    Bellare, M., Micciancio, D., Warinschi, B.: Foundations of Group Signatures. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 614–629. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  5. 5.
    Blum, M., De Santis, A., Micali, S., Persiano, G.: Noninteractive Zero-Knowledge Proof Systems. SIAM Journal on Computation 20(6), 1084–1118 (1991)MATHCrossRefGoogle Scholar
  6. 6.
    Boneh, D.: The Decision Diffie-Hellman Problem. In: Proc. 3rd ANTS, pp. 48–63 (1998)Google Scholar
  7. 7.
    Canetti, R., Dwork, C., Naor, M., Ostrovsky, R.: Deniable Encryption. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 90–104. Springer, Heidelberg (1997)Google Scholar
  8. 8.
    Canetti, R., Feige, U., Goldreich, O., Naor, M.: Adaptively Secure Multiparty Computation. MIT LCS Technical Reports TR96-682 (1996)Google Scholar
  9. 9.
    Chaum, D.: Untraceable electronic mail, return addresses, and digital pseudonyms. Communications of the ACM 4(2) (February 1981)Google Scholar
  10. 10.
    Chaum, D.: The dining cryptographers problem: Unconditional sender and recipient untraceability. Journal of Cryptology 1(1), 65–75 (1988)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Chaum, D., Evertse, J., van de Graaf, J., Peralta, R.: Demonstrating Possession of a Discrete Logarithm Without Revealing It. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 200–212. Springer, Heidelberg (1987)Google Scholar
  12. 12.
    Chaum, D., van Heyst, E.: Group Signatures. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  13. 13.
    Danezis, G., Clulow, J.: Compulsion Resistant Anonymous Communications. In: 7th Information Hiding Workshop (June 2005)Google Scholar
  14. 14.
    Dodis, Y., Kiayias, A., Nicolosi, A., Shoup, V.: Anonymous Identification in Ad-Hoc Groups. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, Springer, Heidelberg (2004)Google Scholar
  15. 15.
    Golle, P., Juels, A.: Dining Cryptographers Revisited. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, Springer, Heidelberg (2004)CrossRefGoogle Scholar
  16. 16.
    Greene, T.C.: Net anonymity service back-doored. In: The Register (August 21, 2003)Google Scholar
  17. 17.
    Groth, J., Ostrovsky, R., Sahai, A.: Perfect Non-Interactive Zero Knowledge for NP. Electronic Colloquium on Computational Complexity report TR05-097 (2005)Google Scholar
  18. 18.
    Juels, A., Jakobsson, M.: Coercion-Resistant Electronic Elections. Cryptology ePrint Archive Report 2002/165 (2002)Google Scholar
  19. 19.
    Katz, J., Yung, M.: Threshold Cryptosystems Based on Factoring. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 192–205. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  20. 20.
    Kiayias, A., Tsiounis, Y., Yung, M.: Traceable Signatures. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, Springer, Heidelberg (2004)CrossRefGoogle Scholar
  21. 21.
    Pedersen, T.P.: A threshold cryptosystem without a trusted party. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 522–526. Springer, Heidelberg (1991)Google Scholar
  22. 22.
    Pedersen, T.P.: Efficient and information theoretic secure verifiable secret sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, Springer, Heidelberg (1992)Google Scholar
  23. 23.
    Reiter, M., Rubin, A.: Crowds: Anonymity for web transactions. ACM Transactions on Information and System Security 1(1), 66–92 (1998)CrossRefGoogle Scholar
  24. 24.
    Shamir, A.: How to share a secret. Communications of the ACM 22, 612–613 (1979)MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Shoup, V.: Practical Threshold Signatures. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, Springer, Heidelberg (2000)Google Scholar
  26. 26.
    Yao, A.C.: How to Generate and Exchange Secrets. In: Proc. 27th IEEE FOCS, pp. 162–167 (1986)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Luis von Ahn
    • 1
  • Andrew Bortz
    • 2
  • Nicholas J. Hopper
    • 3
  • Kevin O’Neill
    • 4
  1. 1.Carnegie Mellon UniversityPittsburghUSA
  2. 2.Stanford UniversityPalo AltoUSA
  3. 3.University of MinnesotaMinneapolisUSA
  4. 4.Cornell UniversityIthacaUSA

Personalised recommendations