Advertisement

Chorus Angelorum

  • Steve Dunne
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4355)

Abstract

We extend B’s GSL by introducing new operators for angelic choice, thus widening its application from its original domain of conjunctive computations to that of monotonic ones in general. We explore the impact of this on our theory of substitutions [6], discovering two dual new normal forms for our new substitutions which we exploit to formulate two new first-order tests of refinement between them.

Keywords

Normal Form Generalise Substitution Predicate Transformer Conjunctive Computation Frame Enlargement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abrial, J.-R.: The B-Book: Assigning Programs to Meanings. Cambridge University Press, Cambridge (1996)MATHCrossRefGoogle Scholar
  2. 2.
    Back, R.-J., von Wright, J.: Refinement Calculus: A Systematic Introduction. Springer, New York (1998)MATHGoogle Scholar
  3. 3.
    Back, R.J.R., von Wright, J.: Combining angels, demons and miracles in program specifications. Theoretical Computer Science 100, 365–383 (1992)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Cavalcanti, A., Woodcock, J.C.P., Dunne, S.E.: Angelic nondeterminism in the unifying theories of programming. Formal Aspects of Computing 18(3), 288–307 (2006)MATHCrossRefGoogle Scholar
  5. 5.
    Dijkstra, E.W., Scholten, C.S.: Predicate Calculus and Program Semantics. Springer, Berlin (1990)MATHGoogle Scholar
  6. 6.
    Dunne, S.E.: A theory of generalised substitutions. In: Bert, D., Bowen, J.P., Henson, M.C., Robinson, K. (eds.) ZB 2002: Formal Specification and Development in Z and B. LNCS, vol. 2272, pp. 270–290. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  7. 7.
    Gardiner, P.H.B., Morgan, C.C.: Data refinement of predicate transformers. Theoretical Computer Science 87, 143–162 (1991)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Gardiner, P.H.B., Morgan, C.C.: A single complete rule for data refinement. Formal Aspects of Computing 5, 367–382 (1993)MATHCrossRefGoogle Scholar
  9. 9.
    Hehner, E.C.R.: Bunch theory: a simple set theory for computer science. Information Processing Letters 12(1), 26–30 (1981)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Englewood Cliffs (1985)MATHGoogle Scholar
  11. 11.
    Hoare, C.A.R., Jifeng, H.: Unifying Theories of Programming. Prentice-Hall, Englewood Cliffs (1998)Google Scholar
  12. 12.
    Jagaeesan, R., Shanbhogue, V., Saraswat, V.: Angelic nondeterminism in concurrent constraint programming, Xerox technical report (1991)Google Scholar
  13. 13.
    Jones, C.B.: Systematic Software Development Using VDM, 2nd edn. Prentice-Hall, Englewood Cliffs (1990)MATHGoogle Scholar
  14. 14.
    Martin, A.P., Gardiner, P.H.B., Woodcock, J.C.P.: A tactical calculus. Formal Aspects of Computing 8(4), 479–489 (1996)MATHCrossRefGoogle Scholar
  15. 15.
    Martin, C.E., Curtis, S.A., Rewitzky, I.: Modelling nondeterminism. In: Kozen, D. (ed.) MPC 2004. LNCS, vol. 3125, pp. 228–251. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  16. 16.
    Rewitzky, I.: Binary multirelations. In: de Swart, H., Orłowska, E., Schmidt, G., Roubens, M. (eds.) Theory and Applications of Relational Structures as Knowledge Instruments. LNCS, vol. 2929, pp. 259–274. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  17. 17.
    Roscoe, A.W.: The Theory and Practice of Concurrency. Prentice-Hall, Englewood Cliffs (1998)Google Scholar
  18. 18.
    Ward, N., Hayes, I.J.: Applications of angelic nondeterminism. In: Bailes, P.A. (ed.) Proc. of the 6th Australian Software Engineering Conference (ASWEC 1991), pp. 391–404. Australian Computer Society (1991)Google Scholar
  19. 19.
    Woodcock, J., Davies, J.: Using Z: Specification, Refinement and Proof. Prentice-Hall, Englewood Cliffs (1996)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Steve Dunne
    • 1
  1. 1.School of ComputingUniversity of TeessideMiddlesbroughUK

Personalised recommendations