Advertisement

An Empirical Study on a Web Server Queueing System and Traffic Generation by Simulation

  • Ho Woo Lee
  • Yun Bae Kim
  • Chang Hun Lee
  • Won Joo Seo
  • Jin Soo Park
  • SeungHyun Yoon
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4317)

Abstract

In this study, we first analyze the log data of the web-server system at a Korean company and confirm strong self-similarities that have been reported in a wide range of internet data. Then, we propose a simulation approach to generate arrivals of web page requests based on the conventional familiar probability distributions. We also present a forecasting model to generate future arrivals and test the validity of our approach through real data. Finally, we present our software tool that we developed to analyze web log data.

Keywords

Simulated Data Queue Length Arrival Process Fractional Brownian Motion Hurst Parameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cox, D.R.: Long-range dependence: a review. In: David, H.A., David, H.T. (eds.) Statistics: An Appraisal, pp. 55–74. Iowa State university Press (1984)Google Scholar
  2. 2.
    Crovella, M.E., Bestavros, A.: Self-Similarity in World Wide Web traffic: evidence and possible causes. IEEE/ACM Transactions on Networking 5(6) (1997)Google Scholar
  3. 3.
    Erramilli, A., Narayan, O., Willinger, W.: Fractal queueing models. CRC Press, Inc., Boca Raton (1997)Google Scholar
  4. 4.
    Feldmann, A., Gilbert, A.c., Willinger, W.: Data networks as cascades: Investigating the multifractal nature of Internet WAN traffic. In: Proc. ACM SIGCOMM 1998, pp. 42–55 (1998)Google Scholar
  5. 5.
    Hosking, J.R.M.: Fractional differencing. Biometrika 68, 165–176 (1981)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Kant, K.: On aggregate traffic generation with multifractal properties. In: Global Telecommunications Conference-Globecom 1999, pp. 1179–1183 (1999)Google Scholar
  7. 7.
    Leland, W.E., Taqqu, M.S., Willinger, W., Wilson, D.V.: On the self-Similar nature of Ethernet traffic (extended version). IEEE/ACM Transaction on Networking 2(1), 1–15 (1994)CrossRefGoogle Scholar
  8. 8.
    Mandelbrot, B.B.: Fractional Brownian motions, fractional noises and applications. SIAM Rev. 10, 422–437 (1968)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Mandelbrot, B.B.: The Fractal Geometry of Nature. Freeman, New York (1982)MATHGoogle Scholar
  10. 10.
    Mandelbrot, B.B., Wallis, J.R.: Some long-run properties of geophysical records. Water Resources Research 5, 321–340 (1969)CrossRefGoogle Scholar
  11. 11.
    Park, K., Kim, G.T., Crovella, M.E.: On the relationship between file sizes, transport protocols and self-similar network traffic. In: Proceedings of the Fourth International Conference on Network Protocols (ICNP 1996), pp. 171–180 (1996)Google Scholar
  12. 12.
    Park, K., Willinger, W.: Self-similar Network Traffic and Performance Evaluation. John Wiley & Sons, Inc., New York (2000)CrossRefGoogle Scholar
  13. 13.
    Paxson, V., Floyd, S.: Wide Area Traffic: The failure of Poisson modeling. IEEE/ACM Transaction on Networking 3(3), 226–244 (1995)CrossRefGoogle Scholar
  14. 14.

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Ho Woo Lee
    • 1
  • Yun Bae Kim
    • 1
  • Chang Hun Lee
    • 1
  • Won Joo Seo
    • 1
  • Jin Soo Park
    • 1
  • SeungHyun Yoon
    • 2
  1. 1.Dept. of Systems Management EngineeringSungkyunkwan UniversitySuwonKorea(South)
  2. 2.Network Control Platform Technology Team, BcN System Research GroupETRIDaejonKorea(South)

Personalised recommendations