GAP-RBF Based NR Image Quality Measurement for JPEG Coded Images

  • R. Venkatesh Babu
  • S. Suresh
Conference paper

DOI: 10.1007/11949619_64

Part of the Lecture Notes in Computer Science book series (LNCS, volume 4338)
Cite this paper as:
Venkatesh Babu R., Suresh S. (2006) GAP-RBF Based NR Image Quality Measurement for JPEG Coded Images. In: Kalra P.K., Peleg S. (eds) Computer Vision, Graphics and Image Processing. Lecture Notes in Computer Science, vol 4338. Springer, Berlin, Heidelberg


In this paper, we present a growing and pruning radial basis function based no-reference (NR) image quality model for JPEG-coded images. The quality of the images are estimated without referring to their original images. The features for predicting the perceived image quality are extracted by considering key human visual sensitivity factors such as edge amplitude, edge length, background activity and background luminance. Image quality estimation involves computation of functional relationship between HVS features and subjective test scores. Here, the problem of quality estimation is transformed to a function approximation problem and solved using GAP-RBF network. GAP-RBF network uses sequential learning algorithm to approximate the functional relationship. The computational complexity and memory requirement are less in GAP-RBF algorithm compared to other batch learning algorithms. Also, the GAP-RBF algorithm finds a compact image quality model and does not require retraining when the new image samples are presented. Experimental results prove that the GAP-RBF image quality model does emulate the mean opinion score (MOS). The subjective test results of the proposed metric are compared with JPEG no-reference image quality index as well as full-reference structural similarity image quality index and it is observed to outperform both.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • R. Venkatesh Babu
    • 1
  • S. Suresh
    • 2
  1. 1.Department of Electrical EngineeringIndian Institute of ScienceBangaloreIndia
  2. 2.School of EEENanyang Technological UniversitySingapore

Personalised recommendations