Advertisement

Selection of Wavelet Subbands Using Genetic Algorithm for Face Recognition

  • Vinod Pathangay
  • Sukhendu Das
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4338)

Abstract

In this paper, a novel representation called the subband face is proposed for face recognition. The subband face is generated from selected subbands obtained using wavelet decomposition of the original face image. It is surmised that certain subbands contain information that is more significant for discriminating faces than other subbands. The problem of subband selection is cast as a combinatorial optimization problem and genetic algorithm (GA) is used to find the optimum subband combination by maximizing Fisher ratio of the training features. The performance of the GA selected subband face is evaluated using three face databases and compared with other wavelet-based representations.

Keywords

Genetic Algorithm Face Recognition Face Image Wavelet Packet Independent Component Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zhao, W., Chellappa, R., Rosenfeld, A., Phillips, P.: Face recognition: A literature survey (2000)Google Scholar
  2. 2.
    Chellappa, R., Wilson, C.L., Sirohey, S.: Human and machine recognition of faces: A survey. Proc. of the IEEE 83, 705–740 (1995)CrossRefGoogle Scholar
  3. 3.
    Tolba, A.S., El-Baz, A.H., El-Harby, A.A.: Face recognition: A literature review. Int. Journal of Signal Processing 2, 88–103 (2005)Google Scholar
  4. 4.
    Kanwisher, N.: Domain specificity in face perception. Nature neuroscience 3, 759–776 (2000)CrossRefGoogle Scholar
  5. 5.
    Liu, J., Harris, A., Kanwisher, N.: Stages of processing in face perception: an MEG study. Nature neuroscience 5, 910–916 (2002)CrossRefGoogle Scholar
  6. 6.
    Gross, R., Baker, S., Matthews, I., Kanade, T.: Face recognition across pose and illumination. In: Li, S.Z., Jain, A.K. (eds.) Handbook of Face Recognition, Springer, Heidelberg (2004)Google Scholar
  7. 7.
    Lee, J., Machiraju, R., Pfister, H., Moghaddam, B.: Estimation of 3d faces and illumination from single photographs using a bilinear illumination model. In: Proc. Eurographics Symposium on Rendering (EGSR) (2005)Google Scholar
  8. 8.
    Lee, K.C., Moghaddam, B.: A practical face relighting method for directional lighting normalization. In: Int. Workshop on Analysis and Modeling of Faces and Gestures (AMFG) (2005)Google Scholar
  9. 9.
    Zhang, L., Samaras, D.: Face recognition from a single training image under arbitrary unknown lighting using spherical harmonics. IEEE Tran. on Pattern Analysis and Machine Intelligence 28, 351–363 (2006)CrossRefGoogle Scholar
  10. 10.
    Garcia, C., Zikos, G., Tziritas, G.: Wavelet packet analysis for face recognition. Image and Vision Computing 18, 289–297 (2000)CrossRefGoogle Scholar
  11. 11.
    Chien, J.T., Wu, C.C.: Discriminant waveletfaces and nearest feature classifier for face recognition. IEEE Tran. on Pattern Analysis and Machine Intelligence 24, 1644–1649 (2002)CrossRefGoogle Scholar
  12. 12.
    Zhang, B.L., Zhang, H., Ge, S.S.: Face recognition by applying wavelet subband representation and kernel associative memory. IEEE Tran. on Neural Networks 15, 166–177 (2004)CrossRefGoogle Scholar
  13. 13.
    Ekenel, H.K., Sankur, B.: Multiresolution face recognition. Image and Vision Computing 23, 469–477 (2005)CrossRefGoogle Scholar
  14. 14.
    Pathangay, V., Das, S.: Exploring the use of selective wavelet subbands for PCA based face recognition. In: Proc. National Conference on Image Processing (NCIP 2005), Bangalore, India, pp. 182–185 (2005)Google Scholar
  15. 15.
    Liu, C., Weschler, H.: Evolution of optimal projection axes (opa) for face recognition. In: Proc. 3rd IEEE Int. Conf. on Automatic Face and Gesture Recognition, pp. 282–287 (1998)Google Scholar
  16. 16.
    Liu, C., Weschler, H.: Evolutionary pursuit and its application to face recognition. IEEE Tran. on Pattern Analysis and Machine Intelligence 22, 570–582 (2000)CrossRefGoogle Scholar
  17. 17.
    Zhang, X., Mersereau, R.M., Broun, C.C.: Visual speech feature extraction for improved speech recognition. In: Proc. of the Int. Conf. on Acoustics Speech and Signal Processing, Orlando, Florida, USA, pp. 1993–1996 (2002)Google Scholar
  18. 18.
    Yi-qiong, X., Bi-Cheng, L., Bo, W.: Face recognition by fast independent component analysis and genetic algorithms. In: Proc. 4th Int. Conf. on Computer and Information Technology, pp. 194–198 (2004)Google Scholar
  19. 19.
    Karungaru, S., Fukumi, M., Akamatsu, N.: Face recognition using genetic algorithm based template matching. In: Proc. Int. Symposium on Communications and Information Technologies, pp. 1252–1257 (2004)Google Scholar
  20. 20.
    Zhao, Q., Lu, H., Zhang, D.: A fast evolutionary pursuit algorithm based on linearly combining vectors. Pattern Recognition 39, 310–312 (2006)CrossRefMATHGoogle Scholar
  21. 21.
    Yankun, Z., Chongqing, L.: Face recognition using kernel principal component analysis and genetic algorithms. In: Proc. 12th IEEE Workshop on Neural Networks for Signal Processing, pp. 337–343 (2002)Google Scholar
  22. 22.
    Wang, X., Qi, H.: Face recognition using optimal non-orthogonal wavelet basis evaluated by information complexity. In: Proc. 16th Int. Conf. on Pattern Recognition, vol. 1, pp. 164–167 (2002)Google Scholar
  23. 23.
    Mallat, S.G.: A theory for multiresolution signal decomposition: The wavelet representation. IEEE Tran. on Pattern Analysis and Machine Intelligence 11, 674–693 (1989)CrossRefMATHGoogle Scholar
  24. 24.
    Fliege, N.J.: Multirate Digital Signal Processing. John Wiley and Sons, Ltd, Chichester (2004)Google Scholar
  25. 25.
    Jensen, A., Cour-Harbo, A.: Ripples in Mathematics: The Discete Wavelet Transform. Springer, Heidelberg (2003)Google Scholar
  26. 26.
    Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, Reading (1989)MATHGoogle Scholar
  27. 27.
    Sim, T., Baker, S., Bsat, M.: The CMU pose, illumination, and expression database. IEEE Tran. on Pattern Analysis and Machine Intelligence 25, 1615–1618 (2003)CrossRefGoogle Scholar
  28. 28.
    Turk, M.A., Pentland, A.: Face recognition using eigenfaces. In: Proc. 11th Int. Conf. Pattern Recognition, pp. 586–591 (1991)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Vinod Pathangay
    • 1
  • Sukhendu Das
    • 1
  1. 1.Visualization and Perception Laboratory, Department of Computer Science and EngineeringIndian Institute of Technology MadrasChennaiIndia

Personalised recommendations