Advertisement

Progressive Decomposition of Point Clouds Without Local Planes

  • Jag Mohan Singh
  • P. J. Narayanan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4338)

Abstract

We present a reordering-based procedure for the multiresolution decomposition of a point cloud in this paper. The points are first reordered recursively based on an optimal pairing. Each level of reordering induces a division of the points into approximation and detail values. A balanced quantization at each level results in further compression. The original point cloud can be reconstructed without loss from the decomposition. Our scheme does not require local reference planes for encoding or decoding and is progressive. The points also lie on the original manifold at all levels of decomposition. The scheme can be used to generate different discrete LODs of the point set with fewer points in each at low BPP numbers. We also present a scheme for the progressive representation of the point set by adding the detail values selectively. This results in the progressive approximation of the original shape with dense points even at low BPP numbers. The shape gets refined as more details are added and can reproduce the original point set. This scheme uses a wavelet decomposition of the detail coefficients of the multiresolution decomposition. Progressiveness is achieved by including different levels of the DWT decomposition at all multiresolution representation levels. We show that this scheme can generate much better approximations at equivalent BPP numbers for the point set.

Keywords

Point Cloud Wavelet Decomposition Progressive Representation Local Plane Move Little Square 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kobbelt, L., Botsch, M.: A survey of point-based techniques in computer graphics. Computer and Graphics 28, 801–814 (2004)CrossRefGoogle Scholar
  2. 2.
    Pauly, M., Gross, M.: Spectral processing of point-sampled geometry. In: SIGGRAPH 2001, pp. 379–386 (2001)Google Scholar
  3. 3.
    Alexa, M., Behr, J., Cohen-Or, D., Fleishman, S., Levin, D., Silva, C.T.: Computing and rendering point set surfaces. IEEE Transactions on Visualization and Computer Graphics 9, 3–15 (2003)CrossRefGoogle Scholar
  4. 4.
    Gumhold, S., Strasser, W.: Real time compression of triangle mesh connectivity. In: SIGGRAPH 1998, pp. 133–140 (1998)Google Scholar
  5. 5.
    Rossignac, J.: Edgebreaker: Connectivity compression for triangle meshes. IEEE Transactions on Visualization and Computer Graphics 5, 133–140 (1999)CrossRefGoogle Scholar
  6. 6.
    Touma, C., Gotsman, C.: Triangle mesh compression. In: Graphics Interface, pp. 26–34 (1998)Google Scholar
  7. 7.
    Hoppe, H.: Progressive meshes. In: SIGGRAPH 1996, pp. 99–108 (1996)Google Scholar
  8. 8.
    Khodakovsky, A., Schroder, P., Sweldens, W.: Progressive geometry compression. In: SIGGRAPH 2000, pp. 271–278 (2000)Google Scholar
  9. 9.
    Rusinkiewicz, S., Levoy, M.: Qsplat: a multiresolution point rendering system for large meshes. In: SIGGRAPH 2000, pp. 343–352 (2000)Google Scholar
  10. 10.
    Levoy, M., Pulli, K., Curless, B., Rusinkiewicz, S., Koller, D., Pereira, L., Ginzton, M., Anderson, S., Davis, J., Ginsberg, J., Shade, J., Fulk, D.: The digital michelangelo project: 3d scanning of large statues. In: SIGGRAPH 2000, pp. 131–144 (2000)Google Scholar
  11. 11.
    Gobbetti, E., Marton, F.: Layered point clouds. In: Eurographics Symposium on Point Based Graphics, vol. 227, pp. 113–120, 227 (2004)Google Scholar
  12. 12.
    Stamminger, M., Drettakis, G.: Interactive sampling and rendering for complex and procedural geometry. In: Rendering Techniques 2001 (Proceedings of the Eurographics Workshop on Rendering 01) (2001)Google Scholar
  13. 13.
    Fleishman, S., Cohen-Or, D., Alexa, M., Silva, C.T.: Progressive point set surfaces. ACM Trans. Graph. 22, 997–1011 (2003)CrossRefGoogle Scholar
  14. 14.
    Pauly, M., Gross, M., Kobbelt, L.P.: Efficient simplification of point-sampled surfaces. In: VIS 2002: Proceedings of the conference on Visualization 2002, pp. 163–170 (2002)Google Scholar
  15. 15.
    Waschbüsch, M., Gross, M., Eberhard, F., Lamboray, E., Wurmlin., S.: Progressive compression of point-sampled models. In: Proceedings of the Eurographics Symposium on Point-Based Graphics, pp. 95–102 (2004)Google Scholar
  16. 16.
    Gumhold, S., Karni, Z., Isenburg, M., Seidel, H.P.: Predictive point-cloud compression. In: Proceedings of the Sixth Israel-Korea Bi-National Conference, pp. 125–129 (2005)Google Scholar
  17. 17.
    Cook, W., Rohe, A.: Computing minimum-weight perfect matchings. INFORMS Journal on Computing 11, 138–148 (1999)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Luebke, D., Reddy, M., Cohen, J.D., Varshney, A., Watson, B., Huebner, R.: Level of Detail for 3D Graphics. Morgan Kaufmann, San Francisco (2003)Google Scholar
  19. 19.
    Botsch, M., Wiratanaya, A., Kobbelt, L.: Efficient high quality rendering of point sampled geometry. In: EGRW 2002: Proceedings of the 13th Eurographics workshop on Rendering, pp. 53–64 (2002)Google Scholar
  20. 20.
    Moffat, A., Neal, R.M., Witten, I.H.: Arithmetic coding revisited. ACM Trans. Inf. Syst. 16, 256–294 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Jag Mohan Singh
    • 1
  • P. J. Narayanan
    • 1
  1. 1.Center for Visual Information TechnologyInternational Institute of Information TechnologyHyderabadIndia

Personalised recommendations