Nonlinear Enhancement of Extremely High Contrast Images for Visibility Improvement

  • K. Vijayan Asari
  • Ender Oguslu
  • Saibabu Arigela
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4338)


This paper presents a novel image enhancement algorithm using a multilevel windowed inverse sigmoid (MWIS) function for rendering images captured under extremely non uniform lighting conditions. MWIS based image enhancement is a combination of three processes viz. adaptive intensity enhancement, contrast enhancement and color restoration. Adaptive intensity enhancement uses the non linear transfer function to pull up the intensity of underexposed pixels and to pull down the intensity of overexposed pixels of the input image. Contrast enhancement tunes the intensity of each pixel’s magnitude with respect to its surrounding pixels. A color restoration process based on relationship between spectral bands and the luminance of the original image is applied to convert the enhanced intensity image back to a color image.


Image Enhancement High Dynamic Range Bright Region Tone Mapping High Contrast Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Land, E.: Recent advances in retinex theory. Vision Res. 16, 445–458 (1976)CrossRefGoogle Scholar
  2. 2.
    Jabson, D., Rahman, Z., Woodel, G.A.: Properties and performance of a center/surround retinex. IEEE Trans. on Image Processing: Special Issue on Color Processing 6, 451–462 (1997)Google Scholar
  3. 3.
    Rahman, Z., Jabson, D., Woodel, G.A.: Multiscale retinex for color image enhancement. In: Proc. IEEE Int. Conf. on Image Processing (1996)Google Scholar
  4. 4.
    Rahman, Z., Jabson, D., Woodel, G.A.: Multiscale retinex for color rendition and dynamic range compression. In: Tescher, A.G. (ed.) Applications of Digital Image Processing XIX, Proc. SPIE, vol. 2847, pp. 183–191 (1996)Google Scholar
  5. 5.
    Tao, L., Asari, V.K.: Modified luminance based MSR for fast and efficient image enhancement. In: Proc. IEEE Int. Workshop on Applied Imagery and Pattern Recognition, AIPR - 2003, October 2003, pp. 174–179 (2003)Google Scholar
  6. 6.
    Tao, L., Asari, K.V.: An adaptive and integrated neighborhood dependent approach for nonlinear enhancement of color images. SPIE Journal of Electronic Imaging 14(4), 1.1–1.14 (2005)Google Scholar
  7. 7.
    Tao, L., Tompkins, R.C., Asari, K.V.: An illuminance-reflectance model for nonlinear enhancement of video stream for homeland security applications. In: Proc. IEEE Int. Workshop on Applied Imagery and Pattern Recognition, AIPR - 2005, Washington DC, October 19-21 (2005)Google Scholar
  8. 8.
    Ashikhmin, M.: A tone mapping algorithm for high contrast images. In: Proc. Eurographics Workshop on Rendering, pp. 145–156 (2002)Google Scholar
  9. 9.
    Drago, F., Martens, K., Annen, T., Chiba, N.: Adaptive logarithmic mapping for displaying high contrast scenes. In: Proc. Eurographics (2003)Google Scholar
  10. 10.
    Larson, G.W., Rushmeier, H., Piatko, C.: A visibility matching tone reproduction operator for high dynamic range scenes. IEEE Trans. Visualization and Computer Graphics 3(4), 291–306 (1997)CrossRefGoogle Scholar
  11. 11.
    Chiu, K., Herf, M., Shirley, P., Swamy, S., Wang, C., Zimmerman, K.: Spatially nonuniform scaling functions for high contrast images. Graphics Interface, 245–255 (May 1993)Google Scholar
  12. 12.
    Schlick, C.: Quantization techniques for visualization of high dynamic range pictures. In: 5th Eurographics Workshop on Rendering (June 1994)Google Scholar
  13. 13.
    Pattanaik, S.N., Ferwarda, J.A., Fairchild, M.D., Greenberg, D.P.: A multiscale model of adaptation and spatial vision for realistic image display. In: Proc. SIGGRAPH 1998. Computer Graphics Proc., Annual Conference Series, July 1998, pp. 287–298 (1998)Google Scholar
  14. 14.
    Tumblin, J., Turk, G.: LCIS: A boundary hierarchy for detail-preserving contrast reduction. In: Proc. SIGGRAPH 1999, pp. 83–90 (1999)Google Scholar
  15. 15.
    Fattal, R., Lischinski, D., Werman, M.: Gradient domain high dynamic range compression. In: Proc. ACM SIGGRAPH 2002, pp. 249–256. ACM Press, New York (2002)Google Scholar
  16. 16.
    Jabson, D.J., Rahman, Z., Woodell, G.A.: Statistics of visual representation. In: Proc. SPIE, vol. 4736, pp. 25–35 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • K. Vijayan Asari
    • 1
  • Ender Oguslu
    • 1
  • Saibabu Arigela
    • 1
  1. 1.Computational Intelligence and Machine Vision Laboratory, Department of Electrical and Computer EngineeringOld Dominion UniversityNorfolkUSA

Personalised recommendations