Early Vision and Image Processing: Evidences Favouring a Dynamic Receptive Field Model

  • Kuntal Ghosh
  • Sandip Sarkar
  • Kamales Bhaumik
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4338)


Evidences favouring a dynamic receptive field model of retinal ganglion cells and the cells of Lateral Geniculate Nucleus (LGN) have been presented based on the perception of some brightness-contrast illusions. Of the different kinds of such stimuli, four, namely the Simultaneous Brightness-contrast, the White effect, the DeValois and DeValois checkerboard illusion and the Howe stimulus have been chosen to establish this model. The present approach attempts to carry forward the works that look upon visual perception as a step-by-step information processing task rather than a rule-based Gestalt approach and provides a new biologically inspired tool for simultaneous smoothing and edge enhancement in image processing.


Retinal Ganglion Cell Test Patch Lateral Geniculate Nucleus Early Vision Information Processing Task 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barlow, H.B.: Single units and sensation: a neuron doctrine for perceptual psychology? Perception 1, 371–394 (1972)CrossRefGoogle Scholar
  2. 2.
    Hubel, D.H., Wiesel, T.N.: Receptive fields of single neurons in the cat’s striate cortex. Journal of Physiology 148, 574–591 (1959)Google Scholar
  3. 3.
    Hubel, D.H., Wiesel, T.N.: Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. Journal of Physiology 166, 106–154 (1962)Google Scholar
  4. 4.
    Palmer, S.E.: Vision Science: Photons to Phenomenology. MIT Press, Cambridge (1999)Google Scholar
  5. 5.
    White, M.: The effect of the nature of the surround on the perceived lightness of gray bars within square-wave test gratings. Perception 10, 215–230 (1981)CrossRefGoogle Scholar
  6. 6.
    DeValois, R.L., DeValois, K.K.: Spatial Vision. Oxford University Press, New York (1988)Google Scholar
  7. 7.
    Agostini, T., Proffitt, D.R.: Perceptual organization evokes simultaneous lightness contrast. Perception 22, 263–272 (1993)CrossRefGoogle Scholar
  8. 8.
    Howe, P.D.L.: A comment on the Anderson, the Todorovic (1997), and the Ross and Pessoa (2000) explanation of White’s effect. Perception 30, 1023–1026 (1997)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Ghosh, K., Sarkar, S., Bhaumik, K.: A possible explanation of the low-level brightness-contrast illusions in the light of an extended classical receptive field model of retinal ganglion cells. Biological Cybernetics 94, 89–96 (2006)MATHCrossRefGoogle Scholar
  10. 10.
    Ghosh, K., Sarkar, S., Bhaumik, K.: Proposing new methods in low-level vision from the Mach band illusion in retrospect. Pattern Recognition 39, 726–730 (2006)CrossRefGoogle Scholar
  11. 11.
    Ross, W.D., Pessoa, L.: Lightness from contrast: A selective integration model. Perception and Psychophysics 62, 1160–1181 (2000)CrossRefGoogle Scholar
  12. 12.
    Ghosh, K., Sarkar, S., Bhaumik, K.: A possible mechanism of zero-crossing detection using the concept of extended classical receptive field of retinal ganglion cells. Biological Cybernetics 93, 1–5 (2005)MATHCrossRefGoogle Scholar
  13. 13.
    Sun, C., Chen, X., Huang, L., Shou, T.: Orientation bias of the extraclassical re-ceptive field of the relay cells in the cat’s dorsal lateral geniculate nucleus. Neuroscience 125, 495–505 (2004)CrossRefGoogle Scholar
  14. 14.
    Passaglia, L., Enroth-Cugell, C., Troy, J.B.: Effects of remote stimulation on the mean firing rate of cat retinal ganglion cells. Journal of Neuroscience 21, 5794–5803 (2001)Google Scholar
  15. 15.
    Todorovic, D.: Lightness and junctions. Perception 26, 379–395 (1997)CrossRefGoogle Scholar
  16. 16.
    Anderson, B.L.: A theory of illusory lightness and transparency in monocular and binocular images: the role of computer junctions. Perception 26, 419–453 (1997)CrossRefGoogle Scholar
  17. 17.
    Marr, D., Hildreth, E.: Theory of edge detection. Proceedings of Royal Society of London B 207, 187–217 (1980)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Kuntal Ghosh
    • 1
  • Sandip Sarkar
    • 1
  • Kamales Bhaumik
    • 2
  1. 1.Saha Institute of Nuclear PhysicsKolkata-64India
  2. 2.West Bengal University of TechnologyKolkata-64India

Personalised recommendations