Advertisement

Speckle Reduction in Images with WEAD and WECD

  • Jeny Rajan
  • M. R. Kaimal
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4338)

Abstract

In this paper we discuss the speckle reduction in images with the recently proposed Wavelet Embedded Anisotropic Diffusion (WEAD) and Wavelet Embedded Complex Diffusion (WECD). Both these methods are improvements over anisotropic and complex diffusion by adding wavelet based bayes shrink in its second stage. Both WEAD and WECD produces excellent results when compared with the existing speckle reduction filters. The comparative analysis with other methods were mainly done on the basis of Structural Similarity Index Matrix (SSIM) and Peak Signal to Noise Ratio (PSNR). The visual appearance of the image is also considered.

Keywords

Synthetic Aperture Radar Synthetic Aperture Radar Image Anisotropic Diffusion Speckle Noise Linear Diffusion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gagnon, L., Jouan, A.: Speckle Filtering of SAR Images – A Comparative Study between Complex-Wavelet-Based and Standard Filters. In: Wavelet Applications in Signal and Image Processing: Proceedings of SPIE, vol. 3169, pp. 80–91 (1997)Google Scholar
  2. 2.
    Yu, Y., Acton, S.T.: Speckle Reducing Anisotropic Diffusion. IEEE Trans. on Image Processing 11, 1260–1270 (2002)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Zhang, Z.H., Prinet, V., De Song, M.A.: A New Method for SAR Speckle Reduction. IEEE, Los Alamitos (2002)Google Scholar
  4. 4.
    Rohling, R.N., Gee, A.H.: Issues in 3-D Free-Hand Medical Ultrasound Imaging, Technical Report, Cambridge University Engineering Department (1996)Google Scholar
  5. 5.
    Trahey, G.E., Hubbard, S.M., von Ramm, O.T.: Angle Independent Ultrasonic Blood Flow Dtection by Frame-to-Frame Correlation of B-mode Images. Ultrasonics 26, 271–276 (1988)CrossRefGoogle Scholar
  6. 6.
    Sun, Z., Ying, H., Lu, J.: A Noninvasive Cross-Correlation Ultrasound Technique for Detecting Spatial Profile of Laser – Induced Coagulation Damage – An in vitro Study. IEEE Trans. on Biomed. Engg. 48, 223–229 (2001)CrossRefGoogle Scholar
  7. 7.
    Dangeti, S.: Denoising Techniques – A Comparison, Thesis Report, Submitted to the Dept. of Electrical and Computer Engineering, Louisiana State University and Agricultural and Mechanical College (2003)Google Scholar
  8. 8.
    Rajan, J., Kaimal, M.R.: Image Denoising using Wavelet Embedded Anisotropic Diffusion (WEAD). In: Proceedings of IEE International Conference on Visual Information Engineering (2006)Google Scholar
  9. 9.
    Rajan, J.: Image Denoising using Partial Differential Equations, M.Tech. Thesis, Submitted to Department of Computer Science, University of Kerala (INDIA) (2005)Google Scholar
  10. 10.
    Weickert, J.: Anisotropic Diffusion in Image Processing. ECMI Series. Teubner – Verlag (1998)Google Scholar
  11. 11.
    Perona, P., Malik, J.: Scale Space and Edge Detection using Anisotropic Diffusion. IEEE Trans. on Pattern Analysis and Machine Intelligence 12, 629–639 (1990)CrossRefGoogle Scholar
  12. 12.
    You, Y.-L., Xu, W., Tannenbaum, A., Kaveh, M.: Behavioral Analysis of Analysis of Anisotropic Diffusion. IEEE Trans. on Image Processing 5 (1996)Google Scholar
  13. 13.
    Mrazek, P., Weickert, J., Steidl, G.: Correspondence between Wavelet Shrinkage and Non linear Diffusion. In: Griffin, L.D., Lillholm, M. (eds.) Scale-Space 2003. LNCS, vol. 2695, pp. 101–116. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  14. 14.
    Lijima, T.: Basic Theory on Normalization of Pattern. Bulletin of the Electrotechnical Laboratory 26, 368–388 (1962)Google Scholar
  15. 15.
    Charbonnier, P., Aubert, G., Blanc-Feraud, L., Barlaud, M.: Two deterministic half-quadratic regularization algorithms for computed imaging. In: Proc. 1994 IEEE International Conference on Image Processing, vol. 2, pp. 168–172 (1994)Google Scholar
  16. 16.
    Andreu, F., Ballester, C., Caselles, V., Mazn, J.M.: Minimizing total variation flow. Differential and Integral Equations 14, 321–360 (2001)MATHMathSciNetGoogle Scholar
  17. 17.
    Keeling, S.L., Stollberger, R.: Nonlinear anisotropic diffusion filters for wide range edge sharpening. Inverse Problems 18, 175–190 (2002)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Kostin, M.D.: Schrodinger-Fuerth quantum diffusion theory: Generalized complex diffusion equation. J. Math. Phys. (1992)Google Scholar
  19. 19.
    Gilboa, G., Sochen, N., Zeevi, Y.Y.: Image Enhancement and Denoising by Complex Diffusion Processes. IEEE Trans. On Pattern Analysis and Machine Imtelligence 26 (2004)Google Scholar
  20. 20.
    Chang, S.G., Yu, B., Vetterli, M.: Adaptive Wavelet Thresholding for Image Denoising and Compression. IEEE Trans. Image Processing 9 (2000)Google Scholar
  21. 21.
    Wang, Z., Bovik, A.C., Sheik, H.R., Simoncelli, E.P.: Image Quality Assessment: From Error Visibility to Structural Similarity. IEEE Trans. Image Processing 13 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Jeny Rajan
    • 1
  • M. R. Kaimal
    • 2
  1. 1.NeSTTrivandrumIndia
  2. 2.Department of Computer ScienceUniversity of KeralaTrivandrumIndia

Personalised recommendations