Remote Sensing Image Classification: A Neuro-fuzzy MCS Approach

  • B. Uma Shankar
  • Saroj K. Meher
  • Ashish Ghosh
  • Lorenzo Bruzzone
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4338)


The present article proposes a new neuro-fuzzy-fusion (NFF) method for combining the output of a set of fuzzy classifiers in a multiple classifier system (MCS) framework. In the proposed method the output of a set of classifiers (i.e., fuzzy class labels) are fed as input to a neural network, which performs the fusion task. The proposed fusion technique is tested on a set of remote sensing images and compared with existing techniques. Experimental study revealed the improved classification capability of the NFF based MCS as it yielded consistently better results.


Fusion Method Speaker Recognition Remote Sensing Image Reasoning Rule Membership Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Drucker, H., Cortes, C., Jackel, L.D., LeCun, Y., Vapnik, V.: Boosting and other ensamble methods. Neural Computation 6, 1289–1301 (1994)MATHCrossRefGoogle Scholar
  2. 2.
    Bertolami, R., Bunke, H.: Ensemble methods for handwritten text line recognition systems. In: Proceedings of the 2005 IEEE International Conference on Systems, Man and Cybernetics, pp. 2334–2339 (2005)Google Scholar
  3. 3.
    Kittler, J., Hatef, M., Duin, R.P.W., Matas, J.: On combining classifiers. IEEE Transactions on Pattern Analysis and Machine Intelligence 20, 226–239 (1998)CrossRefGoogle Scholar
  4. 4.
    Fumera, G., Roli, F.: A theoretical and experimental analysis of linear combiners for multiple classifier systems. IEEE Transactions on Pattern Analysis and Machine Intelligence 27, 942–956 (2005)CrossRefGoogle Scholar
  5. 5.
    Gutta, S., Huang, J.R.J., Jonathon, P., Wechsler, H.: Mixture of experts for classification of gender, ethnic origin, and pose of human faces. IEEE Transactions on Neural Networks 11(4), 948–960 (2000)CrossRefGoogle Scholar
  6. 6.
    Moonasar, V., Venayagamoorthy, G.K.: A committee of neural networks for automatic speaker recognition ASR systems. In: Proceedings of the IJCNN 2001. International Joint Conference on Neural Networks, vol. 4, pp. 2936–2940 (2001)Google Scholar
  7. 7.
    Chee, L.P., Harrison, R.F.: Online pattern classification with multiple neural network systems: an experimental study. IEEE Transactions on Neural Networks 23, 235–247 (2003)Google Scholar
  8. 8.
    Kuncheva, L.I.: Combining Pattern Classifiers: Methods and Algorithms. Wiley-Interscience, Chichester (2004)MATHCrossRefGoogle Scholar
  9. 9.
    Multiple Classifier Systems, International Workshop on MCS. vol. 1857, 2096, 2364, 2709, 3077 and 3541 of LNCS. Springer, Heidelberg (2000-2005)Google Scholar
  10. 10.
    Kimura, F., Shridhar, M.: Handwritten numerical recognition based on multiple algorithms. Pattern Recognition 24, 969–983 (1991)CrossRefGoogle Scholar
  11. 11.
    Franke, J., Mandler, E.: A comparison of two approaches for combining the votes of cooperating classifiers. In: Proceedings of 11th IAPR International Conference on Pattern Recognition systems, pp. 611–614 (1992)Google Scholar
  12. 12.
    Ho, T.K., Hull, J.J., Srihari, S.N.: Decision combination in multiple classifier systems. IEEE Transactions on Pattern Analysis and Machine Intelligence 16, 66–75 (1994)CrossRefGoogle Scholar
  13. 13.
    Bagui, S.C., Pal, N.R.: A multistage generalization of the rank nearest neighbor classification rule. Pattern Recognition Letters 16, 601–614 (1995)CrossRefGoogle Scholar
  14. 14.
    Xu, L., Krzyzak, A., Suen, C.Y.: Methods of combining multiple classifiers and their applications to handwriting recognition. IEEE Transactions on Systems, Man, and Cybernetics 22, 418–435 (1992)CrossRefGoogle Scholar
  15. 15.
    Hashem, Schmeiser, B.: Improving model accuracy using optimal linear combinations of trained neural networks. IEEE Transactions on Neural Networks 6, 792–794 (1995)CrossRefGoogle Scholar
  16. 16.
    Cho, S.-B., Kim, J.H.: Combining multiple neural networks by fuzzy integral and robust classification. IEEE Transactions on Systems, Man, and Cybernetics 25, 380–384 (1995)CrossRefGoogle Scholar
  17. 17.
    Cho, S.B., Kim, J.H.: Multiple network fusion using fuzzy logic. IEEE Transactions on Neural Networks 6, 497–501 (1995)CrossRefGoogle Scholar
  18. 18.
    Rogova, G.: Combining the results of several neural network classifiers. Neural Networks 7, 777–781 (1994)CrossRefGoogle Scholar
  19. 19.
    Tso, B., Mather, P.M.: Classification Methods for Remotely Sensed Data. Taylor and Francis, London (2001)MATHCrossRefGoogle Scholar
  20. 20.
    Richards, J.A., Jia, X.: Remote Sensing Digital Image Analysis: An Introduction, 3rd edn. Springer, New York (1999)Google Scholar
  21. 21.
    Zadeh, L.A.: Fuzzy sets. Information Control 8, 338–353 (1965)MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Kuncheva, L.I.: Fuzzy Classifier Design. Springer, Heidelberg (2000)MATHGoogle Scholar
  23. 23.
    Wang, F.: Fuzzy supervised classification of remote sensing images. IEEE Transactions on Geoscience and Remote Sensing 28, 194–201 (1990)CrossRefGoogle Scholar
  24. 24.
    Maselli, F., Rodolfi, A., Copnese, C.: Fuzzy classification of spatially degraded thematic mapper data for the estimation of sub-pixel components. International Journal of Remote Sensing 17, 537–551 (1996)CrossRefGoogle Scholar
  25. 25.
    Pal, S.K., Ghosh, A., Shankar, B.U.: Segmentation of remotely sensed images with fuzzy thresholding, and quatitative evaluation. International Jounal of Remote Sensing 21, 2269–2300 (2000)CrossRefGoogle Scholar
  26. 26.
    Melgani, F., Al Hashemy, B.A.R., Taha, S.M.R.: An explicit fuzzy supervised classification method for multispectral remote sensing images. IEEE Transaction on Geoscience and Remote Sensing 38, 287–295 (2000)CrossRefGoogle Scholar
  27. 27.
    Chen, C.F.: Fuzzy training data for fuzzy supervised classification of remotely sensed images. In: Asian Conference on Remote Sening (ACRS 1999) (1999)Google Scholar
  28. 28.
    Keller, J.M., Gray, M., Givens, J.: A fuzzy k-nearest neighbor algorithm. IEEE Transactions on Systems, Man and Cybernatics 15, 580–585 (1985)Google Scholar
  29. 29.
    Ghosh, A., Meher, S.K., Shankar, B.U.: Fuzzy supervised classification using aggregation of features. Technical report, MIU/TR-02/2005, Indian Statistical Institute (2005)Google Scholar
  30. 30.
    Pal, S.K., Majumder, D.D.: Fuzzy sets and decision making approaches in vowel and speaker recognition. IEEE Transactions on Systems, Man and Cybernetics 7, 625–629 (1977)MATHCrossRefGoogle Scholar
  31. 31.
    Kuncheva, L.I., Bezdek, J.C., Duin, R.P.W.: Decision templates for multiple classifier fusion: An experimental comparison. Pattern Recognition 34, 299–314 (2001)MATHCrossRefGoogle Scholar
  32. 32.
    Haykin, S.: Neural Networks: A Comprehensive Foundation, 2nd edn. Prentice-Hall, Englewood Cliffs (1998)Google Scholar
  33. 33.
    Lippmann, R.P.: An introduction to computing with neural nets. IEEE ASSP Magazine, 4–22 (1987)Google Scholar
  34. 34.
    Xie, X.L., Beni, G.: A validity measure for fuzzy clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence 13, 841–847 (1991)CrossRefGoogle Scholar
  35. 35.
    NRSA: IRS data users hand book. Technical report, Document No. IRS/NRSA/NDC/HB-02/89 (1989)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • B. Uma Shankar
    • 2
  • Saroj K. Meher
    • 2
  • Ashish Ghosh
    • 2
  • Lorenzo Bruzzone
    • 1
  1. 1.Department of Information and Communication TechnologiesUniversity of TrentoTrentoItaly
  2. 2.Machine Intelligence UnitIndian Statistical InstituteKolkataIndia

Personalised recommendations