Skip to main content

Robust Pose Estimation with 3D Textured Models

  • Conference paper
Advances in Image and Video Technology (PSIVT 2006)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4319))

Included in the following conference series:

Abstract

Estimating the pose of a rigid body means to determine the rigid body motion in the 3D space from 2D images. For this purpose, it is reasonable to make use of existing knowledge of the object. Our approach exploits the 3D shape and the texture of the tracked object in form of a 3D textured model to establish 3D-2D correspondences for pose estimation. While the surface of the 3D free-form model is matched to the contour extracted by segmentation, additional reliable correspondences are obtained by matching local descriptors of interest points between the textured model and the images. The fusion of these complementary features provides a robust pose estimation. Moreover, the initial pose is automatically detected and the pose is predicted for each frame. Using the predicted pose as shape prior makes the contour extraction less sensitive. The performance of our method is demonstrated by stereo tracking experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Rosenhahn, B., Brox, T., Weickert, J.: Three-dimensional shape knowledge for joint image segmentation and pose tracking. Int. J. of Computer Vision (2006)

    Google Scholar 

  2. David, P., DeMenthon, D., Duraiswami, R., Samet, H.: Simultaneous pose and correspondence determination using line feature. In: Int. Conf. of Computer Vision, pp. 424–431 (2003)

    Google Scholar 

  3. Vacchetti, L., Lepetit, V., Fua, P.: Stable real-time 3d tracking using online and offline information. IEEE Trans. on Pattern Analysis and Machine Intelligence 26(10), 1391–1391 (2004)

    Article  Google Scholar 

  4. Allezard, N., Dhome, M., Jurie, F.: Recognition of 3d textured objects by mixing view-based and model-based representations. In: Int. Conf. on Pattern Recognition, vol. 01, pp. 960–963 (2000)

    Google Scholar 

  5. Rosenhahn, B., Perwass, C., Sommer, G.: Pose estimation of free-form contours. Int. J. of Computer Vision 62(3), 267–289 (2005)

    Article  Google Scholar 

  6. Lepetit, V., Pilet, J., Fua, P.: Point matching as a classification problem for fast and robust object pose estimation. In: Conf. on Computer Vision and Pattern Recognition, vol. 2, pp. 244–250 (2004)

    Google Scholar 

  7. Brox, T., Rosenhahn, B., Cremers, D., Seidel, H.-P.: High accuracy optical flow serves 3-d pose tracking: Exploiting contour and flow based constraints. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3952, pp. 98–111. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  8. Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. In: IEEE Conf. on Computer Vision and Pattern Recognition, vol. 02, pp. 257–263 (2003)

    Google Scholar 

  9. Lowe, D.: Distinctive image features from scale-invariant keypoints. Int. J. of Computer Vision 60(2), 91–110 (2004)

    Article  Google Scholar 

  10. Ke, Y., Sukthankar, R.: Pca-sift: A more distinctive representation for local image descriptors. In: IEEE Conf. on Computer Vision and Pattern Recognition, vol. 2, pp. 506–513 (2004)

    Google Scholar 

  11. Lowe, D.: Object recognition from local scale-invariant features. In: Int. Conf. on Computer Vision, pp. 1150–1157 (1999)

    Google Scholar 

  12. Mikolajczyk, K., Schmid, C.: Scale and affine invariant interest point detectors. Int. J. of Computer Vision 60(1), 63–86 (2004)

    Article  Google Scholar 

  13. Mikolajczyk, K., Schmid, C.: An affine invariant interest point detector. In: European Conf. on Computer Vision, pp. 128–142 (2002)

    Google Scholar 

  14. Brown, M., Lowe, D.: Invariant features from interest point groups. In: British Machine Vision Conf, pp. 656–665 (2002)

    Google Scholar 

  15. Brox, T., Rousson, M., Deriche, R., Weickert, J.: Unsupervised segmentation incorporating colour, texture, and motion. In: Petkov, N., Westenberg, M.A. (eds.) CAIP 2003. LNCS, vol. 2756, pp. 353–360. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  16. Zhang, Z.: Iterative point matching for registration of free-form curves and surfaces. Int. J. of Computer Vision (1994)

    Google Scholar 

  17. Murray, R., Li, Z., Sastry, S.: A Mathematical Introduction to Robotic Manipulation. CRC Press, Boca Raton (1994)

    MATH  Google Scholar 

  18. Rosenhahn, B., Brox, T., Smith, D., Gurney, J., Klette, R.: A system for marker-less human motion estimation. Künstliche Intelligenz 1, 45–51 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gall, J., Rosenhahn, B., Seidel, HP. (2006). Robust Pose Estimation with 3D Textured Models. In: Chang, LW., Lie, WN. (eds) Advances in Image and Video Technology. PSIVT 2006. Lecture Notes in Computer Science, vol 4319. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11949534_9

Download citation

  • DOI: https://doi.org/10.1007/11949534_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-68297-4

  • Online ISBN: 978-3-540-68298-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics