Octree Subdivision Using Coplanar Criterion for Hierarchical Point Simplification

  • Pai-Feng Lee
  • Chien-Hsing Chiang
  • Juin-Ling Tseng
  • Bin-Shyan Jong
  • Tsong-Wuu Lin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4319)


This study presents a novel rapid and effective point simplification algorithm based on point clouds without using either normal or connectivity information. Sampled points are clustered based on shape variations by octree data structure, an inner point distribution of a cluster, to judge whether these points correlate with the coplanar characteristics. Accordingly, the relevant point from each coplanar cluster is chosen. The relevant points are reconstructed to a triangular mesh and the error rate remains within a certain tolerance level, and significantly reducing number of calculations needed for reconstruction. The hierarchical triangular mesh based on the octree data structure is presented. This study presents hierarchical simplification and hierarchical rendering for the reconstructed model to suit user demand, and produce a uniform or feature-sensitive simplified model that facilitates rapid further mesh-based applications, especially the level of detail.


Point Cloud Triangular Mesh Move Least Square Point Simplification Relevant Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gu’eziec, A.: Surface simplification with variable tolerance. In: Second Annual Intl. Symp. on Medical Robotics and Computer Assisted Surgery (MRCAS 1995), pp. 132–139 (1995)Google Scholar
  2. 2.
    Hamann, B.: A Data Reduction Scheme for Triangulated Surfaces. Computer Aided Geometric Design 11, 197–214 (1994)CrossRefMathSciNetMATHGoogle Scholar
  3. 3.
    Jong, B.S., Tseng, J.L., Yang, W.H., Lin, W.: Extracting Features and Simplifying Surfaces using Shape Operator. In: Qing, S., Mao, W., López, J., Wang, G. (eds.) ICICS 2005. LNCS, vol. 3783, pp. 1025–1029. Springer, Heidelberg (2005)Google Scholar
  4. 4.
    Jong, B.S., Chung, W.Y., Lee, P.F., Tseng, J.L.: Efficient Surface Reconstruction Using Local Vertex Characteristics. In: The 2005 International Conference on Imaging Science, Systems, and Technology: Computer Graphics, pp. 62–68 (2005)Google Scholar
  5. 5.
    Moenning, C., Dodgson, N.A.: Intrinsic point cloud simplification. In: Proc. 14th GrahiCon, vol. 14 (2004)Google Scholar
  6. 6.
    Boissonnat, J.D., Cazals, F.: Coarse-to-fine surface simplification with geometric guarantees. In: EUROGRAPHICS 2001, Conf. Proc, pp. 490–499 (2001)Google Scholar
  7. 7.
    Rossignac, J., Borrel, P.: Multi- resolution 3D approximations for rendering complex scenes. In: Modeling in Computer Graphics: Methods and Applications, pp. 455–465 (1993)Google Scholar
  8. 8.
    Alexa, M., Behr, J., Cohen-Or, D., Fleishman, S., Levin, D., Silva, T.: Point Set Surfaces. In: Proc. 12th IEEE Visualization Conf., pp. 21–28 (2001)Google Scholar
  9. 9.
    Garland, M., Heckbert, P.S.: Surface simplification using quadric error metrics. In: SIGGRAPH 1997 Conference Proceedings, pp. 209–216 (1997)Google Scholar
  10. 10.
    Pauly, M., Gross, M., Kobbelt, L.P.: Efficient Simplification of Point-Sampled Surfaces. In: In Proc. 13th IEEE Visualization Conf., pp. 163–170 (2002)Google Scholar
  11. 11.
    Cignoni, P., Montani, C., Scopigno, R.: Metro: Measuring Error on Simplified Surfaces. Computer Graphics Forum 17(2), 167–174 (1998)CrossRefGoogle Scholar
  12. 12.
    All‘egre, R., Chaine, R., Akkouche, S.: Convection-driven dynamic surface reconstruction. In: Proc. Shape Modeling International, pp. 33–42 (2005)Google Scholar
  13. 13.
    Dey, T.K., Giesen, J., Hudson, J.: Decimating Samples for Mesh Simplification. In: Proc. 13th Canadian Conference on Computational Geometry, pp. 85–88 (2001)Google Scholar
  14. 14.
    Gieng, T.S., Hamann, B., Joy, K.I., Schussman, G.L., Trotts, I.J.: Constructing hierarchies for triangle meshes. IEEE Transactions on Visualization and Computer Graphics 4(2), 145–161 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Pai-Feng Lee
    • 1
  • Chien-Hsing Chiang
    • 1
  • Juin-Ling Tseng
    • 2
  • Bin-Shyan Jong
    • 3
  • Tsong-Wuu Lin
    • 4
  1. 1.Dept. of Electronic EngineeringChung Yuan Christian University 
  2. 2.Dept. of Management Information SystemChin Min Institute of Technology 
  3. 3.Dept. of Information & Computer EngineeringChung Yuan Christian University 
  4. 4.Dept. of Computer & Information ScienceSoochow University 

Personalised recommendations