Skip to main content

Advances on Automated Multiple View Inspection

  • Conference paper
Advances in Image and Video Technology (PSIVT 2006)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4319))

Included in the following conference series:

  • 1192 Accesses

Abstract

Automated visual inspection is defined as a quality control task that determines automatically if a product, or test object, deviates from a given set of specifications using visual data. In the last 25 years, many research directions in this field have been exploited, some very different principles have been adopted and a wide variety of algorithms have been appeared in the literature. However, automated visual inspection systems still suffer from i) detection accuracy, because there is a fundamental trade off between false alarms and miss detections; and ii) strong bottleneck derived from mechanical speed and from high computational cost. For this reasons, automated visual inspection remains an open question. In this sense, Automated Multiple View Inspection, a robust method that uses redundant views of the test object to perform the inspection task, is opening up new possibilities in inspection field by taking into account the useful information about the correspondence between the different views. This strategy is very robust because in first step it identifies potential defects in each view and in second step it finds correspondences between potential defects, and only those that are matched in different views are detected as real defects. In this paper, we review the advances done in this field giving an overview of the multiple view methodology and showing experimental results obtained on real data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Malamas, E., Petrakis, E., Zervakis, M.: A survey on industrial vision systems, applications and tools. Image and Vision Computing 21, 171–188 (2003)

    Article  Google Scholar 

  2. Newman, T., Jain, A.: A survey of automated visual inspection. Computer Vision and Image Understanding 61, 231–262 (1995)

    Article  Google Scholar 

  3. Chin, R.: Automated visual inspection: 1981-1987. Computer Vision Graphics Image Process 41, 346–381 (1988)

    Article  Google Scholar 

  4. Chin, R.T., Harlow, C.: Automated visual inspection: A survey. IEEE Trans. Pattern Analysis and Machine Intelligence 4, 557–573 (1982)

    Article  Google Scholar 

  5. Mery, D.: Automated radioscopic testing of aluminum casting. Materials Evaluation 64, 135–143 (2006)

    Google Scholar 

  6. Castleman, K.: Digital image processing. Prentice-Hall, Englewood Cliffs (1996)

    Google Scholar 

  7. Purschke, M.: IQI-sensitivity and applications of flat panel detectors and X-ray image intensifiers - a comparison. Insight 44, 628–630 (2002)

    Google Scholar 

  8. Davis, E.: Machine Vision, 3rd edn. Morgan Kaufmann Publishers, San Francisco (2005)

    Google Scholar 

  9. Trussell, H., Saber, E., Vrhel, M.: Color image processing. IEEE Signal Processing Magazine 22, 14–22 (2005)

    Article  Google Scholar 

  10. Nagy, J., Palmer, K., Perrone, L.: Iterative methods for image deblurring: A Matlab object-oriented approach. Numerical Algorithms 36, 73–93 (2005)

    Article  MathSciNet  Google Scholar 

  11. Banham, M., Katsaggelos, A.: Digital image restoration. IEEE Signal Processing Magazine 14, 24–40 (1997)

    Article  Google Scholar 

  12. Zhang, Y.J.: An Overview of Image and Video Segmentation in the Last 40 Years. In: Zhang, Y.-J. (ed.) Advances in Image and Video Segmentation, pp. 1–15. IRM Press, Idea Group Inc, Hershey (2006)

    Chapter  Google Scholar 

  13. Cheng, H., Jiang, X., Sun, Y., Wang, J.: Color image segmentation: advances and prospects. Pattern Recognition 34, 2259–2281 (2001)

    Article  MATH  Google Scholar 

  14. Koschan, A., Abidi, M.: Detection and classification of edges in color images: A review of vector-valued techniques. IEEE Signal Processing Magazine 22, 64–73 (2005)

    Article  Google Scholar 

  15. Mery, D.: Crossing line profile: a new approach to detecting defects in aluminium castings. In: Bigun, J., Gustavsson, T. (eds.) SCIA 2003, vol. 2749, pp. 725–732. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  16. Mery, D., Berti, M.: Automatic detection of welding defects using texture features. Insight 45, 676–681 (2003)

    Article  Google Scholar 

  17. Webb, A.: Statistical Pattern Recognition, 2nd edn. John Wiley and Sons Ltd, New Jersey (2005)

    Google Scholar 

  18. Jain, A., Duin, R., Mao, J.: Statistical pattern recognition: A review. IEEE Trans. Pattern Analysis and Machine Intelligence 22, 4–37 (2000)

    Article  Google Scholar 

  19. Somol, P., Pudil, P., Kittler, J.: Fast branch and bound algorithms for optimal feature selection. IEEE Trans. on Pattern Analysis and Machine Intelligence 26, 900–912 (2004)

    Article  Google Scholar 

  20. Mery, D., da Silva, R., Caloba, L., Rebello, J.: Pattern recognition in the automatic inspection of aluminium castings. Insight 45, 475–483 (2003)

    Article  Google Scholar 

  21. Carvajal, K., Chacón, M., Mery, D., Acuña, G.: Neural network method for failure detection with skewed class distribution. Insight 46, 399–402 (2004)

    Article  Google Scholar 

  22. Kay, S.: Fundamentals of Statistical Signal Processing: Detection Theory. Processing Series, vol. 2. Prentice Hall Signal, New Jersey (1998)

    Google Scholar 

  23. Provost, F., Fawcett, T.: Robust classification for imprecise environments. Machine Learning Journal 42, 203–231 (2001)

    Article  MATH  Google Scholar 

  24. Manolakis, D., Shaw, G.: Detection algorithms for hyperspectral imaging applications. IEEE Signal Processing Magazine 19, 29–43 (2002)

    Article  Google Scholar 

  25. Mery, D., Hahn, D., Hitschfeld, N.: Simulation of defects in aluminium castings using cad models of flaws and real X-ray images. Insight 47, 618–624 (2005)

    Article  Google Scholar 

  26. Raina, R., Shen, Y., Ng, A.Y., McCallum, A.: Classification with hybrid generative/discriminative models. In: Thrun, S., Saul, L., Schölkopf, B. (eds.) Advances in neural information processing systems, vol. 16. MIT Press, Cambridge (2003)

    Google Scholar 

  27. Theodoris, S., Koutroumbas, K.: Pattern Recognition, 2nd edn. Academic Press, Elsevier (2003)

    Google Scholar 

  28. Bishop, C.: Neural Network for Pattern Recognition. Oxford University Press Inc., New York (1997)

    Google Scholar 

  29. Shawe-Taylo, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge University Press, Cambridge (2005)

    Google Scholar 

  30. Kuncheva, L.: A theoretical study on six classifier fusion strategies. IEEE Trans. on Pattern Analysis and Machine Learning 24, 281–286 (2002)

    Article  Google Scholar 

  31. Mery, D., Chacón, M., Muñoz, L., Gonzalez, L.: Automated inspection of aluminium castings using fusion strategies. Materials Evaluation 63, 148–153 (2005)

    Google Scholar 

  32. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  33. Mery, D.: Exploiting multiple view geometry in X-ray testing: Part I: Theory. Materials Evaluation 61, 1226–1233 (2003)

    Google Scholar 

  34. Mery, D.: Exploiting multiple view geometry in X-ray testing: Part II: Applications. Materials Evaluation 61, 1311–1314 (2003)

    Google Scholar 

  35. Mitchell, T.: Machine Learning. McGraw-Hill, Boston (1997)

    MATH  Google Scholar 

  36. Mery, D., Filbert, D.: Automated flaw detection in aluminum castings based on the tracking of potential defects in a radioscopic image sequence. IEEE Trans. Robotics and Automation 18, 890–901 (2002)

    Article  Google Scholar 

  37. Mery, D.: Explicit geometric model of a radioscopic imaging system. NDT & E International 36, 587–599 (2003)

    Article  Google Scholar 

  38. Zhang, Z.: A flexible new technique for camera calibration. IEEE Trans. on Pattern Analysis and Machine Intelligence 22, 1330–1334 (2000)

    Article  Google Scholar 

  39. Mery, D., Carrasco, M.: Automated multiple view inspection based on uncalibrated image sequences. In: Kalviainen, H., Parkkinen, J., Kaarna, A. (eds.) SCIA 2005, vol. 3540, pp. 1238–1247. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  40. Carrasco, M., Mery, D.: Automated visual inspection using trifocal analysis in an uncalibrated sequence of images. Materials Evaluation 64 (2006) (in Press)

    Google Scholar 

  41. Mery, D., Ochoa, F., Vidal, R.: Tracking of points in a calibrated and noisy image sequence. In: Campilho, A.C., Kamel, M.S. (eds.) ICIAR 2004, vol. 3211, pp. 647–654. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mery, D., Carrasco, M. (2006). Advances on Automated Multiple View Inspection. In: Chang, LW., Lie, WN. (eds) Advances in Image and Video Technology. PSIVT 2006. Lecture Notes in Computer Science, vol 4319. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11949534_51

Download citation

  • DOI: https://doi.org/10.1007/11949534_51

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-68297-4

  • Online ISBN: 978-3-540-68298-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics