Multifocus Image Sequences for Iris Recognition

  • Byungjun Son
  • Sung-Hyuk Cha
  • Yillbyung Lee
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4319)


We report on an iris recognition system using image sequences instead of single still images for recognition. Image sequences captured at different focus levels provides more information than single still images. Most of the current state-of-the-art iris recognition systems use single still images which are highly focused. These systems does not recognize defocused iris images. The experimental results show that defocused iris images can be correctly recognized if we use multifocus image sequences as gallery images for recognition.


Linear Discriminant Analysis Recognition Rate Iris Image Biometric System Canny Edge Detector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Daugman, J.G.: Statistical richness of visual phase information. Internaltional Journal of Computer Vision 45(1), 25–38 (2001)MATHCrossRefGoogle Scholar
  2. 2.
    Daugman, J.G.: High confidence visual recognition of persons by a test of statistical indenpendence. IEEE Trans. On Pattern Analysis and Machine Intelligence 15, 1148–1161 (1993)CrossRefGoogle Scholar
  3. 3.
    Wildes, R.P.: Iris Recognition: An emerging biometric technology. Proc. of the IEEE 85(9), 1348–1363 (1997)CrossRefGoogle Scholar
  4. 4.
    Negin, M., Chmielewski, T., Salgnicoff, M., von Seelen, U., Venetainer, P., Zhang, G.: An iris biometric system for public and personal use. IEEE Computer 33, 70–75 (2000)Google Scholar
  5. 5.
    Ma, L., Tan, T., Wang, Y., Zhang, D.: Personal identification based on iris texture analysis. IEEE Trans. On Pattern Analysis and Machine Intelligence 15, 1148–1161 (1993)CrossRefGoogle Scholar
  6. 6.
    De Luca, A., Termini, S.: Definition of a non probabilistic entropy in the setting of fuzzy sets theory. IEEE Computer 24, 55–68 (1972)Google Scholar
  7. 7.
    Lai, J.H., Yuen, P.C., Feng, G.C.: Face recognition using holistic Fourier invariant features. Pattern Recognition 34, 95–109 (2001)MATHCrossRefGoogle Scholar
  8. 8.
    Garcia, C., Zikos, G., Tziritas, G.: Wavelet packet analysis for face recognition. Image Vision Computing 18, 289–297 (2000)CrossRefGoogle Scholar
  9. 9.
    Daubechies, I.: The wavelet transform, time-frequency localization and signal analysis. IEEE Trans. Information Theory 36(5), 961–1005 (1990)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Yu, H., Yang, J.: A Direct LDA Algorithm for High-Dimensional Data - with Application to Face Recognition. Pattern Recognition 34(10), 2067–2070 (2001)MATHCrossRefGoogle Scholar
  11. 11.
    Fukunaga, K.: Introduction to Statistical Pattern Recognition. Academic Press, London (1990)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Byungjun Son
    • 1
  • Sung-Hyuk Cha
    • 2
  • Yillbyung Lee
    • 1
  1. 1.Department of Computer ScienceYonsei UniversitySeoulKorea
  2. 2.Computer Science DepartmentPace UniversityPleasantvilleUSA

Personalised recommendations