Advertisement

A Scale Invariant Surface Curvature Estimator

  • John Rugis
  • Reinhard Klette
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4319)

Abstract

In this paper we introduce a new scale invariant curvature measure, similarity curvature. We define a similarity curvature space which consists of the set of all possible similarity curvature values. An estimator for the similarity curvature of digital surface points is developed. Experiments and results applying similarity curvature to synthetic data are also presented.

Keywords

Gaussian Curvature Curvature Measure Similarity Curvature Principle Curvature Spherical Patch 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Levoy, M., Pulli, K., Curless, B., Rusinkiewicz, S., Koller, D., Pereira, L., Ginzton, M., Anderson, S., Davis, J., Ginsberg, J., Shade, J., Fulk, D.: The digital Michelangelo project: 3D scanning of large statues. In: Proc. SIGGRAPH, pp. 131–144 (2000)Google Scholar
  2. 2.
    Mokhtarian, F., Bober, M.: Curvature Scale Space Representation: Theory, Applications, and MPEG-7 Sandardization. Kluwer, Dordrecht (2003)Google Scholar
  3. 3.
    Davies, A., Samuels, P.: An Introducion to Computational Geometry for Curves and Surfaces. Oxford University Press, Oxford (1996)Google Scholar
  4. 4.
    Klette, R., Rosenfeld, A.: Digital Geometry. Morgan Kaufmann, San Francisco (2004)MATHGoogle Scholar
  5. 5.
    Hu, M.: Visual problem recognition by moment invariants. IRE Trans. Inform. Theory 8, 179–187 (1962)Google Scholar
  6. 6.
    Sapiro, G.: Geometric Partial Differential Equations and Image Analysis. Cambridge University Press, Cambridge (2001)MATHCrossRefGoogle Scholar
  7. 7.
    Alboul, L., van Damme, R.: Polyhedral metrics in surface reconstruction. In: Mullineux, G. (ed.) The Mathematics of Surfaces VI, pp. 171–200. Clarendon Press, Oxford (1996)Google Scholar
  8. 8.
    Rugis, J.: Surface curvature maps and Michelangelo’s David. In: McCane, B. (ed.) Image and Vision Computing New Zealand, pp. 218–222 (2005)Google Scholar
  9. 9.
    Rugis, J., Klette, R.: Surface registration markers from range scan data. In: Reulke, R., Eckardt, U., Flach, B., Knauer, U., Polthier, K. (eds.) Proceedings, Combinatorial Image Analysis: 11th International Workshop, IWCIA, pp. 430–444 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • John Rugis
    • 1
    • 2
  • Reinhard Klette
    • 1
  1. 1.CITR, Dep. of Computer ScienceThe University of AucklandAucklandNew Zealand
  2. 2.Dep. of Electrical & Computer EngineeringManukau Institute of TechnologyManukau CityNew Zealand

Personalised recommendations