Advertisement

Primality Tests Based on Fermat’s Little Theorem

  • Manindra Agrawal
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4308)

Abstract

In this survey, we describe three algorithms for testing primality of numbers that use Fermat’s Little Theorem.

Keywords

Arithmetic Operation Polynomial Time Algorithm Prime Power Prime Divisor Output Prime 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agrawal, M., Kayal, N., Saxena, N.: PRIMES is in P. Annals of Mathematics 160(2), 781–793 (2004)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Lidl, R., Niederreiter, H.: Introduction to finite fields and their applications. Cambridge University Press, Cambridge (1986)MATHGoogle Scholar
  3. 3.
    Miller, G.L.: Riemann’s hypothesis and tests for primality. J. Comput. Sys. Sci. 13, 300–317 (1976)MATHCrossRefGoogle Scholar
  4. 4.
    Rabin, M.O.: Probabilistic algorithm for testing primality. J. Number Theory 12, 128–138 (1980)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Solovay, R., Strassen, V.: A fast Monte-Carlo test for primality. SIAM Journal on Computing 6, 84–86 (1977)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Wiles, A.: Modular elliptic curves and fermat’s last theorem. Annals of Mathematics 141, 443–551 (1995)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Manindra Agrawal
    • 1
  1. 1.Department of Computer ScienceIndian Institute of TechnologyKanpur

Personalised recommendations