Advertisement

On Maximizing Network Lifetime of Broadcast in WANETs Under an Overhearing Cost Model

  • Guofeng Deng
  • Sandeep K. S. Gupta
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4308)

Abstract

Absence of line power supplies imposes severe constraints on nodes in wireless ad hoc and sensor networks. In this paper, we concentrate on finding a broadcast tree that maximizes the network’s lifetime. Previous studies showed that this problem is polynomially solvable when assuming receivers consume no energy or only designated receivers consume energy for receiving packets. Due to the broadcast nature of the wireless medium, however, unintended active nodes in the receiving range of a transmitting node may overhear the message and hence contribute to energy wastage. Under the overhearing cost (OC) model, the problem becomes NP-hard and the approximation ratio of the existing solutions, which are optimal under the non-overhearing cost (NOC) model, can be as bad as Ω(n). We investigate the problem by developing heuristic solutions. Simulation results show that our algorithms outperform the existing ones by up to 100%.

Keywords

Transmission Power Source Node Network Size Network Lifetime Multicast Tree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lloyd, E.L., Liu, R., Marathe, M.V.: Algorithm aspects of topology control problems for ad hoc networks. In: Proc. ACM MOBIHOC, EPFL lausanne, Switzerland (2002)Google Scholar
  2. 2.
    Floréen, P., Kaski, P., Kohonen, J., Orponen, P.: Multicast time maximization in energy constrained wireless networks. In: DIALM-POMC, San Diego, CA (2003)Google Scholar
  3. 3.
    Kang, I., Poovendran, R.: Maximizing static network lifetime of wireless broadcast adhoc networks. In: Proc. IEEE ICC, vol. 3 (2003)Google Scholar
  4. 4.
    Das, A.K., Marks, R.J., El-Sharkawi, M., Arabshahi, P., Gray, A.: MDLT: a polynomial time optimal algorithm for maximization of time-to-first-failure in energy constrained wireless broadcast networks. In: Proc. IEEE GLOBECOM (2003)Google Scholar
  5. 5.
    Deng, G., Gupta, S.: Maximizing broadcast tree lifetime in wireless ad hoc networks. In: Proc. IEEE GLOBECOM (2006)Google Scholar
  6. 6.
    Floréen, P., Kaski, P., Kohonen, J., Orponen, P.: Lifetime maximization for multicasting in energy-constrained wireless networks. IEEE J. Select. Areas Commun. 23(1) (2005)Google Scholar
  7. 7.
    Kang, I., Poovendran, R.: Maximizing network lifetime of broadcasting over wireless stationary ad hoc networks. ACM/Kluwer MONET Special Issue on Energy Constraints and Lifetime Performance in Wireless Sensor Networks 10(6), 879–896 (2005)Google Scholar
  8. 8.
    Park, S., Savvides, A., Srivastava, M.: Battery capacity measurement and analysis using lithium coin cell battery. In: ISLPED. ACM Press, New York (2001)Google Scholar
  9. 9.
    Cui, S., Goldsmith, A.J., Bahai, A.: Modulation optimization under energy constraints. In: Proc. IEEE ICC (2003)Google Scholar
  10. 10.
    Basu, P., Redi, J.: Effect of overhearing transmissions on energy efficiency in dense sensor networks. In: Proc. ACM the third international symposium on Information processing in sensor networks (2004)Google Scholar
  11. 11.
    Vasudevan, S., Zhang, C., Goeckel, D., Towsley, D.: Optimal power allocation in wireless networks with transmitter-receiver power tradeoffs. In: Proc. IEEE INFOCOM (2006)Google Scholar
  12. 12.
    Camerini, P.M.: The min-max spanning tree problem and some extensions. Information Processing Letters 7(1), 10–14 (1978)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Burkhart, M., von Rickenbach, P., Wattenhofer, R., Zollinger, A.: Does topology control reduce interference? In: Proc. ACM MOBIHOC (2004)Google Scholar
  14. 14.
    Moaveni-Nejad, K., Li, X.Y.: Low-interference topology control for wireless ad hoc networks. Ad Hoc & Sensor Wireless Networks (2005)Google Scholar
  15. 15.
    Wieselthier, J.E., Nguyen, G.D., Ephremides, A.: On the construction of energy-efficient broadcast and multicast trees in wireless networks. In: Proc. IEEE INFOCOM (2000)Google Scholar
  16. 16.
    Raghunathan, V., Schurgers, C., Park, S., Srivastava, M.B.: Energy-aware wireless microsensor networks. In: IEEE Signal Processing Mag., vol. 19 (2002)Google Scholar
  17. 17.
    Rakhmatov, D., Vrudhula, S., Wallach, D.A.: A model for battery lifetime analysis for organizing applications on a pocket computer. IEEE Trans. VLSI Syst. 11(6), 1019–1030 (2003)CrossRefGoogle Scholar
  18. 18.
    Chiasserini, C.F., Rao, R.R.: Energy efficient battery management. IEEE J. Select. Areas Commun. 19(7), 1235–1245 (2001)CrossRefGoogle Scholar
  19. 19.
    Adamou, M., Sarkar, S.: A framework for optimal battery management for wireless nodes. In: Proc. IEEE INFOCOM (2002)Google Scholar
  20. 20.
    Garey, M.R., Johnson, D.S.: Computers and Intractability, A Guide to the Theory of NP-Completeness. W. H. Freeman and Company, New York (1979)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Guofeng Deng
    • 1
  • Sandeep K. S. Gupta
    • 1
  1. 1.Arizona State UniversityTempeUSA

Personalised recommendations