Advertisement

Distributed Security Algorithms by Mobile Agents

  • Paola Flocchini
  • Nicola Santoro
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4308)

Abstract

Mobile Agents have been extensively studied for several years by researchers in Artificial Intelligence and in Software Engineering. They offer a simple and natural way to describe distributed settings where mobility is inherent, and an explicit and direct way to describe the entities of those settings, such as mobile code, software agents, viruses, robots, web crawlers, etc. Further, they allow to express immediately notions such as selfish behaviour, negotiation, cooperation, etc arising in the new computing environments. As a programming paradigm, they allow a new philosophy of protocol and software design, bound to have an impact as strong as that caused by that of object-oriented programming. As a computational paradigm, mobile agents systems are an immediate and natural extension of the traditional message-passing settings studied in distributed computing.

In spite of all this, mobile agents systems have been largely ignored by the mainstream distributed computing community. It is only in the last few years that several researchers, some motivated by long investigated and well established problems in automata theory, computational complexity, and graph theory, have started to systematically explore this new and exciting distributed computational universe.

In this paper we describe some interesting problems and solution techniques developed in this investigations.

Keywords

Black Hole Mobile Agent Local Immunization Search Number Mobile Code 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Albers, S., Henzinger, M.: Exploring unknown environments. In: Proc. 29th Annu. ACM Sympos. Theory Comput., pp. 416–425 (1997)Google Scholar
  2. 2.
    Alpern, S., Gal, S.: The Theory of Search Games and Rendezvous. Kluwer, Dordrecht (2003)MATHGoogle Scholar
  3. 3.
    Asaka, M., Okazawa, S., Taguchi, A., Goto, S.: A method of tracing intruders by use of mobile agent. INET (1999), http://www.isoc.org
  4. 4.
    Awerbuch, B., Betke, M., Singh, M.: Piecemeal graph learning by a mobile robot. Information and Computation 152, 155–172 (1999)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Barriére, L., Flocchini, P., Fraigniaud, P., Santoro, N.: Capture of an intruder by mobile agents. In: Proc. 14th ACM-SIAM Symp. on Parallel Algorithms and Architectures (SPAA), pp. 200–209 (2002)Google Scholar
  6. 6.
    Barriére, L., Flocchini, P., Fraigniaud, P., Santoro, N.: Can we elect if we cannot compare? In: Proc. 15th ACM Symp. on Parallel Algorithms and Architectures (SPAA), pp. 200–209 (2003)Google Scholar
  7. 7.
    Barriere, L., Flocchini, P., Fraigniaud, P., Santoro, N.: Election and rendezvous in fully anonymous systems with sense of direction. Theory of Computer System (to appear)Google Scholar
  8. 8.
    Barrière, L., Fraigniaud, P., Santoro, N., Thilikos, D.M.: Searching is not jumping. In: Bodlaender, H.L. (ed.) WG 2003. LNCS, vol. 2880, pp. 34–45. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Bender, M., Fernandez, A., Ron, D., Sahai, A., Vadhan, S.: The power of a pebble: Exploring and mapping directed graphs. In: Proc. 30th ACM Symp. on Theory of Computing (STOC), pp. 269–287 (1998)Google Scholar
  10. 10.
    Bender, M., Slonim, D.K.: The power of team exploration: two robots can learn unlabeled directed graphs. In: Proc. 35th Symp. on Foundations of Computer Science (FOCS), pp. 75–85 (1994)Google Scholar
  11. 11.
    Blin, L., Fraigniaud, P., Nisse, N., Vial, S.: Distributed chasing of network intruders by mobile agents. In: Proc. of the 13th Int. Coll. on Structural Information and Communication Complexity (SIROCCO), pp. 70–84 (2006)Google Scholar
  12. 12.
    Cooper, C., Klasing, R., Radzik, T.: Searching for black-hole faults in a network using multiple agents. In: Proc. 10th Int. Conf. on Principle of Distributed Systems (OPODIS) (2006)Google Scholar
  13. 13.
    Czyzowicz, J., Kowalski, D., Markou, E., Pelc, A.: Searching for a black hole in tree networks. In: Proc. 8th Int. Conf. on Principle of Distributed Systems (OPODIS), pp. 35–45 (2004)Google Scholar
  14. 14.
    Czyzowicz, J., Kowalski, D., Markou, E., Pelc, A.: Complexity of searching for a black hole. Fundamenta Informaticae 71(2-3), 229–242 (2006), 35-45 (2004)MATHMathSciNetGoogle Scholar
  15. 15.
    Das, S., Flocchini, P., Nayak, A., Santoro, N.: Exploration and labelling of an unknown graph by multiple agents. In: Proc. 12th Int. Coll. on Structural Information and Communication Complexity (SIROCCO), pp. 99–114 (2005)Google Scholar
  16. 16.
    Das, S., Flocchini, P., Nayak, A., Santoro, N.: Effective elections for anonymous mobile agents. In: Proc. 17th Int. Symp. on Algorithms and Computation (ISAAC) (2006)Google Scholar
  17. 17.
    Deng, X., Papadimitriou, C.H.: Exploring an unknown graph. J. of Graph Theory 32(3), 265–297 (1999)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Dessmark, A., Fraigniaud, P., Pelc, A.: Deterministic rendezvous in graphs. In: Proc. 11th European Symp. on Algorithms (ESA), pp. 184–195 (2003)Google Scholar
  19. 19.
    Dessmark, A., Pelc, A.: Optimal graph exploration without good maps. In: Proc. 10th European Symp. on Algorithms (ESA), pp. 374–386 (2002)Google Scholar
  20. 20.
    Diks, K., Fraigniaud, P., Kranakis, E., Pelc, A.: Tree exploration with little memory. Journal of Algorithms 51, 38–63 (2004)MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Dobrev, S., Flocchini, P., Prencipe, G., Santoro, N.: Mobile search for a black hole in an anonymous ring. Algorithmica (to appear)Google Scholar
  22. 22.
    Dobrev, S., Flocchini, P., Prencipe, G., Santoro, N.: Multiple agents rendezvous in a ring in spite of a black hole. In: Proc. 6th Int. Symp. on Principles of Distributed Systems (OPODIS), pp. 34–46 (2003)Google Scholar
  23. 23.
    Dobrev, S., Flocchini, P., Prencipe, G., Santoro, N.: Searching for a black hole in arbitrary networks: optimal mobile agents protocols. Distributed Computing (to appear)Google Scholar
  24. 24.
    Dobrev, S., Flocchini, P., Kralovic, R., Prencipe, G., Ruzicka, P., Santoro, N.: Optimal search for a black hole in common interconnection networks. Networks 47(2), 61–71 (2006)MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Dobrev, S., Flocchini, P., Santoro, N.: Improved bounds for optimal black hole search in a network with a map. In: Proc. 10th Int. Coll. on Structural Information and Communication Complexity (SIROCCO), pp. 111–122 (2004)Google Scholar
  26. 26.
    Dobrev, S., Flocchini, P., Kralovic, R., Santoro, N.: Exploring a dangerous unknown graph using tokens. In: Proc. 5th IFIP Int. Conf. on Theoretical Computer Science (TCS), pp. 131–150 (2006)Google Scholar
  27. 27.
    Dobrev, S., Flocchini, P., Santoro, N.: Cycling Through a Dangerous Network: A Simple Efficient Strategy for Black Hole Search. In: Int. Conf. on Distributed computing Systems (ICDCS) (2006)Google Scholar
  28. 28.
    Dobrev, S., Královič, R., Santoro, N., Shi, W.: Black hole search in asynchronous rings using tokens. In: Calamoneri, T., Finocchi, I., Italiano, G.F. (eds.) CIAC 2006. LNCS, vol. 3998, pp. 139–150. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  29. 29.
    Dudek, G., Jenkin, M., Milios, E., Wilkes, D.: Robotic exploration as graph construction. Transactions on Robotics and Automation 7(6), 859–865 (1991)CrossRefGoogle Scholar
  30. 30.
    Ellis, J., Sudborough, H., Turner, J.: The vertex separation and search number of a graph. Information and Computation 113(1), 50–79 (1994)MATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Flocchini, P., Kranakis, E., Krizanc, D., Santoro, N., Sawchuk, C.: Multiple mobile agent rendezvous in a ring. In: Farach-Colton, M. (ed.) LATIN 2004. LNCS, vol. 2976, pp. 599–608. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  32. 32.
    Flocchini, P., Huang, M.J., Luccio, F.L.: Contiguous search in the hypercube for capturing an intruder. In: Proc. 18th IEEE Int. Parallel and Distributed Processing Symp. (IPDPS) (2005)Google Scholar
  33. 33.
    Flocchini, P., Huang, M.J., Luccio, F.L.: Decontamination of chordal rings and tori. In: Proc. 8th Workshop on Advances in Parallel and Distributed Computational Models (APDCM) (2006)Google Scholar
  34. 34.
    Flocchini, P., Mans, B., Santoro, N.: Sense of direction in distributed computing. Theoretical Computer Science 291, 29–53 (2003)MATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Flocchini, P., Nayak, A., Shulz, A.: Cleaning an arbitrary regular network with mobile agents. In: Proc. of the 2nd Int. Conf. on Distributed Computing & Internet Technology (ICDCIT), pp. 132–142 (2005)Google Scholar
  36. 36.
    Foukia, N., Hulaas, J.G., Harms, J.: Intrusion Detection with Mobile Agents. INET (2001), www.isoc.org
  37. 37.
    Fraigniaud, P., Gasieniec, L., Kowalski, D., Pelc, A.: Collective tree exploration. Networks (to appear)Google Scholar
  38. 38.
    Fraigniaud, P., Ilcinkas, D.: Digraphs exploration with little memory. In: Diekert, V., Habib, M. (eds.) STACS 2004. LNCS, vol. 2996, pp. 246–257. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  39. 39.
    Fraigniaud, P., Ilcinkas, D., Peer, G., Pelc, A., Peleg, D.: Graph exploration by a finite automaton. Theoretical Computer Science (to appear)Google Scholar
  40. 40.
    Fraigniaud, P., Nisse, N.: Monotony properties of connected visible graph searching. In: Fomin, F.V. (ed.) WG 2006. LNCS, vol. 4271, pp. 22–24. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  41. 41.
    Hohl, F.: Time limited blackbox security: Protecting mobile agents from malicious hosts. In: Vigna, G. (ed.) Mobile Agents and Security. LNCS, vol. 1419, pp. 92–113. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  42. 42.
    Kirousis, L., Papadimitriou, C.: Searching and pebbling. Theoretical Computer Science 47(2), 205–218 (1986)MATHCrossRefMathSciNetGoogle Scholar
  43. 43.
    Klasing, R., Markou, E., Radzik, T., Sarracco, F.: Approximation bounds for black hole search problems. In: Anderson, J.H., Prencipe, G., Wattenhofer, R. (eds.) OPODIS 2005. LNCS, vol. 3974, pp. 261–274. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  44. 44.
    Klasing, R., Markou, E., Radzik, T., Sarracco, F.: Hardness and approximation results for black hole search in arbitrary graphs. In: Pelc, A., Raynal, M. (eds.) SIROCCO 2005. LNCS, vol. 3499, pp. 200–215. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  45. 45.
    Kranakis, E., Krizanc, D., Santoro, N., Sawchuk, C.: Mobile agent rendezvous in a ring. In: Int. Conf. on Distibuted Computing Systems (ICDCS), pp. 592–599 (2003)Google Scholar
  46. 46.
    Kranakis, E., Krizanc, D., Rajsbaum, S.: Mobile agent rendezvous: A survey. In: Flocchini, P., Gąsieniec, L. (eds.) SIROCCO 2006. LNCS, vol. 4056, pp. 1–9. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  47. 47.
    Lapaugh, A.: Recontamination does not help to search a graph. Journal of the ACM 40(2), 224–245 (1993)MATHCrossRefMathSciNetGoogle Scholar
  48. 48.
    Luccio, F., Pagli, L., Santoro, N.: Network decontamination with local immunization. In: Proc. 8th Workshop on Advances in Parallel and Distributed Computational Models, APDCM (2006)Google Scholar
  49. 49.
    Megiddo, N., Hakimi, S., Garey, M., Johnson, D., Papadimitriou, C.: The complexity of searching a graph. Journal of the ACM 35(1), 18–44 (1988)MATHCrossRefMathSciNetGoogle Scholar
  50. 50.
    Oppliger, R.: Security issues related to mobile code and agent-based systems. Computer Communications 22(12), 1165–1170 (1999)CrossRefGoogle Scholar
  51. 51.
    Panaite, P., Pelc, A.: Exploring unknown undirected graphs. Journal of Algorithms 33, 281–295 (1999)MATHCrossRefMathSciNetGoogle Scholar
  52. 52.
    Panaite, P., Pelc, A.: Impact of topographic information on graph exploration efficiency. Networks 36, 96–103 (2000)MATHCrossRefMathSciNetGoogle Scholar
  53. 53.
    Parson, T.: The search number of a connected graph. In: The 9th Southeastern Conf. on Combinatorics, Graph Theory and Computing, Utilitas Mathematica, pp. 549–554 (1978)Google Scholar
  54. 54.
    Sander, T., Tschudin, C.F.: Protecting mobile agents against malicious hosts. In: Vigna, G. (ed.) Mobile Agents and Security. LNCS, vol. 1419, pp. 44–60. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  55. 55.
    Spafford, E.H., Zamboni, D.: Intrusion detection using autonomous agents. Computer Networks 34(4), 547–570 (2000)CrossRefGoogle Scholar
  56. 56.
    Vitek, J., Castagna, G.: Mobile computations and hostile hosts. In: Tsichritzis, D. (ed.) Mobile Objects, pp. 241–261. University of Geneva (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Paola Flocchini
    • 1
  • Nicola Santoro
    • 2
  1. 1.University of Ottawa 
  2. 2.Carleton University 

Personalised recommendations