Intrinsic Splicing Profile of Human Genes Undergoing Simple Cassette Exon Events

  • Andigoni Malousi
  • Vassilis Koutkias
  • Sofia Kouidou
  • Nicos Maglaveras
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4345)


Alternative pre-mRNA splicing presides over protein diversity and organism complexity. Alternative splicing isoforms in human have been associated with specific developmental stages, tissue-specific expressions and disease-causing factors. In this study, we identified and analysed intrinsic features that discriminate non-conserved human genes that undergo a single internal cassette exon event from constitutively spliced exons. Context-based analysis revealed a guanine-rich track at the donor of the cassette’s upstream intronic region that is absent in the constitutive dataset, as well as significant differences in the distribution of CpG and A3/G3 sequences between the alternative and the constitutive intronic regions. Interestingly, introns flanking cassette exons are larger than the constitutive ones, while exon lengths do not vary significantly. Splice sites flanking cassette exons are less identifiable, while splice sites at the outer ends are ‘stronger’ than constitutive introns. The results indicate that specific intrinsic features are linked with the inclusion/excision of internal exons which are indicative of the underlying selection rules.


Alternative splicing cassette exons splice sites intrinsic features 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Modrek, B., Lee, C.: A genomic view of alternative splicing. Nat. Genet. 30, 13–19 (2002)CrossRefGoogle Scholar
  2. 2.
    Johnson, J.M., Castle, J., Garrett-Engele, P., Kan, Z., Loerch, P.M., Armour, C.D., Santos, R., Schadt, E.E., Stoughton, R., Shoemaker, D.D.: Genome-wide survey of human alternative pre-mRNA splicing with exon junction microarrays. Science 302, 2141–2144 (2003)CrossRefGoogle Scholar
  3. 3.
    Ast, G.: How did alternative splicing evolve? Nat. Rev. Genet. 5, 773–782 (2004)CrossRefGoogle Scholar
  4. 4.
    Faustino, N.A., Cooper, T.A.: Pre-mRNA splicing and human disease. Genes Dev. 17, 419–437 (2003)CrossRefGoogle Scholar
  5. 5.
    Venables, J.P.: Aberrant and alternative splicing in cancer. Cancer Res. 64, 7647–7654 (2004)CrossRefGoogle Scholar
  6. 6.
    Modrek, B., Resch, A., Grasso, C., Lee, C.: Genome-wide detection of alternative splicing in expressed sequences of human genes. Nucleic Acids Res. 29, 2850–2859 (2001)CrossRefGoogle Scholar
  7. 7.
    Graveley, B.R.: Alternative splicing: increasing diversity in the proteomic world. Trends Genet. 17, 100–107 (2001)CrossRefGoogle Scholar
  8. 8.
    Stamm, S., Zhu, J., Nakai, K., Stoilov, P., Stoss, O., Zhang, M.Q.: An alternative-exon database and its statistical analysis. DNA Cell Biol. 19, 739–756 (2000)CrossRefGoogle Scholar
  9. 9.
    Stamm, S., Riethoven, J.J., Le Texier, V., Gopalakrishnan, C., Kumanduri, V., Tang, Y., Barbosa-Morais, N.L., Thanaraj, T.A.: ASD: a bioinformatics resource on alternative splicing. Nucleic Acids Res. 34, D46–D55 (2006)CrossRefGoogle Scholar
  10. 10.
    Mathe, C., Sagot, M.F., Schiex, T., Rouze, P.: Current methods of gene prediction, their strengths and weaknesses. Nucleic Acids Res. 30, 4103–4117 (2002)CrossRefGoogle Scholar
  11. 11.
    Yeo, G., Burge, C.B.: Maximum entropy modeling of short sequence motifs with applications to RNA splicing signals. J. Comput. Biol. 11, 377–394 (2004)CrossRefGoogle Scholar
  12. 12.
    Shapiro, M.B., Senapathy, P.: RNA splice junctions of different classes of eukaryotes: sequence statistics and functional implications in gene expression. Nucleic Acids Res. 15, 7155–7174 (1987)CrossRefGoogle Scholar
  13. 13.
    Thompson, J.D., Higgins, D.G., Gibson, T.J.: CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994)CrossRefGoogle Scholar
  14. 14.
    Clamp, M., Cuff, J., Searle, S.M., Barton, G.J.: The Jalview Java alignment editor. Bioinformatics 20, 426–427 (2004)CrossRefGoogle Scholar
  15. 15.
    Foissac, S., Schiex, T.: Integrating alternative splicing detection into gene prediction. BMC. Bioinformatics 6, 25–34 (2005)CrossRefGoogle Scholar
  16. 16.
    Rogic, S., Mackworth, A.K., Ouellette, F.B.: Evaluation of gene-finding programs on mammalian sequences. Genome Res. 11, 817–832 (2001)CrossRefGoogle Scholar
  17. 17.
    Burge, C., Karlin, S.: Prediction of complete gene structures in human genomic DNA. J. Mol. Biol. 268, 78–94 (1997)CrossRefGoogle Scholar
  18. 18.
    Pertea, M., Lin, X., Salzberg, S.L.: GeneSplicer: a new computational method for splice site prediction. Nucleic Acids Res. 29, 1185–1190 (2001)CrossRefGoogle Scholar
  19. 19.
    Magen, A., Ast, G.: The importance of being divisible by three in alternative splicing. Nucleic Acids Res. 33, 5574–5582 (2005)CrossRefGoogle Scholar
  20. 20.
    Ladd, A.N., Cooper, T.A.: Finding signals that regulate alternative splicing in the post-genomic era. Genome Biol. 3, 1–16 (2002) (reviews0008)CrossRefGoogle Scholar
  21. 21.
    Sorek, R., Shamir, R., Ast, G.: How prevalent is functional alternative splicing in the human genome? Trends Genet. 20, 68–71 (2004)CrossRefGoogle Scholar
  22. 22.
    McCullough, A.J., Berget, S.M.: G triplets located throughout a class of small vertebrate introns enforce intron borders and regulate splice site selection. Mol. Cell Biol. 17, 4562–4571 (1997)Google Scholar
  23. 23.
    Clark, F., Thanaraj, T.A.: Categorization and characterization of transcript-confirmed constitutively and alternatively spliced introns and exons from human. Hum. Mol. Genet. 11, 451–464 (2002)CrossRefGoogle Scholar
  24. 24.
    Thanaraj, T.A., Stamm, S.: Prediction and statistical analysis of alternatively spliced exons. Prog. Mol. Subcell. Biol. 31, 1–31 (2003)Google Scholar
  25. 25.
    Itoh, H., Washio, T., Tomita, M.: Computational comparative analyses of alternative splicing regulation using full-length cDNA of various eukaryotes. RNA 10, 1005–1018 (2004)CrossRefGoogle Scholar
  26. 26.
    Maniatis, T., Tasic, B.: Alternative pre-mRNA splicing and proteome expansion in metazoans. Nature 418, 236–243 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Andigoni Malousi
    • 1
  • Vassilis Koutkias
    • 1
  • Sofia Kouidou
    • 2
  • Nicos Maglaveras
    • 1
  1. 1.Lab. of Medical Informatics, Faculty of MedicineAristotle University of ThessalonikiThessalonikiGreece
  2. 2.Dept. of Biological Chemistry, Faculty of MedicineAristotle University of ThessalonikiThessalonikiGreece

Personalised recommendations