Advertisement

The Effect of User Factors on Consumer Familiarity with Health Terms: Using Gender as a Proxy for Background Knowledge About Gender-Specific Illnesses

  • Alla Keselman
  • Lisa Massengale
  • Long Ngo
  • Allen Browne
  • Qing Zeng
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4345)

Abstract

An algorithm estimating vocabulary complexity of a consumer health text can help improve readability of consumer health materials. We had previously developed and validated an algorithm predicting lay familiarity with health terms on the basis of the terms’ frequency in consumer health texts and experimental data. Present study is part of the program studying the influence of reader factors on familiarity with health terms and concepts. Using gender as a proxy for background knowledge, the study evaluates male and female participants’ familiarity with terms and concepts pertaining to three types of health topics: male-specific, female-specific and gender-neutral. Of the terms / concepts of equal predicted difficulty, males were more familiar with those pertaining to neutral and male-specific topics (the effect was especially pronounced for “difficult” terms); no topic effect was observed for females. The implications for tailoring health readability formulas to various target populations are discussed.

Keywords

consumer health informatics readability formulas consumer health vocabularies 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Eysenbach, G., Powell, J., Kuss, O., Sa, E.R.: Empirical studies assessing the quality of health information for consumers on the world wide web: a systematic review. In: JAMA 2002, May 22-29, vol. 287(20), pp. 2691–2700 (2002)Google Scholar
  2. 2.
    Berland, G.K., Elliott, M.N., Morales, L.S., et al.: Health information on the Internet: accessibility, quality, and readability in English and Spanish. In: JAMA 2001, May 23-30, vol. 285(20), pp. 2612–2621 (2001)Google Scholar
  3. 3.
    Flesch, J.R., Kincaid, C.: Flesch-Kincaid Readability Formula. Houghton Mifflin, Boston (1965)Google Scholar
  4. 4.
    Guthrie, T.J., Wigfield, A., Metsala, J.L., Cox, K.E.: Motivational and Cognitive Predictors of Text Comprehension and Reading Amount. Scientific Studies of Reading 3(3), 231–256 (1999)CrossRefGoogle Scholar
  5. 5.
    Zeng, Q., Tse, T., Crowell, J., Divita, G., Roth, L., Browne, A.C.: Identifying consumer-friendly display (CFD) names for health concepts. In: Proc. AMIA Symp. 2005, pp. 859–863 (2005)Google Scholar
  6. 6.
    Zeng, Q., Kim, E.J., Crowell, J., Tse, T.: A text corpora-based estimation of the familiarity of health terminology. In: Oliveira, J.L., Maojo, V., Martín-Sánchez, F., Pereira, A.S. (eds.) ISBMDA 2005. LNCS (LNBI), vol. 3745, pp. 184–192. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Keselman, A., Tse, T., Crowell, J., Browne, A., Ngo, L., Zeng, Q.: Assessing Consumer Health Vocabulary Familiarity: An Exploratory Study. In: Proc. MEDNET 2006 (2006)Google Scholar
  8. 8.
    Langer, J.A.: Examining Background Knowledge and Text Comprehension Reading Research Quarterly  19(4), 468–481 (1984)Google Scholar
  9. 9.
    Anderson, R.C., Freebody, P.: Vocabulary knowledge. In: Guthrie, J.T. (ed.) Comprehension and teaching: Research reviews. International Reading Association, Newark (1981)Google Scholar
  10. 10.
    Baker, D.W., Williams, M.V., Parker, R.M., Gazmararian, J.A., Nurss, J.: Development of a brief test to measure functional health literacy. Patient Educ. Couns. 38(1), 33–42 (1999)CrossRefGoogle Scholar
  11. 11.
    Lee, S.-Y.D., Bender, D.E., Ruiz, R.E., Cho, Y.I.: Development of an easy-to-use Spanish health literacy test. Health Serv. Res. 41(4), 1392–1412 (2006)Google Scholar
  12. 12.
    Davis, T.C., Long, S.W., Jackson, R.H., Mayeaux, E.J., George, R.B., Murphy, P.W., et al.: Rapid estimate of adult literacy in medicine: a shortened screening instrument. Fam. Med. 25(6), 391–395 (1993)Google Scholar
  13. 13.
    Laird, M.N., Ware, H.J.: Random-Effects Models for Longitudinal Data. Biometrics 38, 963–974 (1982)zbMATHCrossRefGoogle Scholar
  14. 14.
    Bull, M.J.: Interventions for women as family caregivers. Annu. Rev. Nurs. Res. 19, 125–142 (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Alla Keselman
    • 1
    • 2
  • Lisa Massengale
    • 1
  • Long Ngo
    • 3
  • Allen Browne
    • 1
  • Qing Zeng
    • 4
  1. 1.LHNCBC, National Library of Medicine, NIH, DHHSBethesda
  2. 2.Aquilent, Inc.Laurel
  3. 3.DSG, Brigham and Women’s Hospital, Harvard Medical SchoolBoston
  4. 4.Harvard Medical SchoolDSG, Beth Israel Deaconess Medical CenterBoston

Personalised recommendations